Implementación de la clase IP4Mask para gestionar máscaras de direcciones IPv4 y mejoras en la clase Class_IP4 para soportar nuevas sintaxis de entrada. Se actualiza el autocompletado y se añaden métodos para obtener la máscara de red y la longitud del prefijo. Se mejora la documentación de ayuda contextual.

This commit is contained in:
Miguel 2025-06-02 19:53:21 +02:00
parent bc768e9ca7
commit 23676b9ef9
4 changed files with 319 additions and 157 deletions

View File

@ -2,9 +2,93 @@
Clase híbrida para direcciones IPv4
"""
from sympy_Base import SympyClassBase
from typing import Optional, Tuple
from typing import Optional, Union
import re
class IP4Mask:
"""
Helper class to manage IPv4 masks.
It can be initialized with an integer prefix (0-32) or a netmask string (e.g., "255.255.255.0").
"""
_prefix: int
_mask_int: int
def __init__(self, mask_input: Union[int, str]):
if isinstance(mask_input, int):
if not (0 <= mask_input <= 32):
raise ValueError(f"Invalid prefix length: {mask_input}. Must be between 0 and 32.")
self._prefix = mask_input
elif isinstance(mask_input, str):
try:
# Try to interpret as prefix length string, e.g., "24"
prefix_val = int(mask_input)
if not (0 <= prefix_val <= 32):
raise ValueError(f"Invalid prefix string: '{mask_input}'. Must be between 0 and 32.")
self._prefix = prefix_val
except ValueError:
# Try to interpret as netmask string, e.g., "255.255.255.0"
parsed_prefix = self._netmask_str_to_prefix(mask_input)
if parsed_prefix is None:
raise ValueError(f"Invalid netmask string format: '{mask_input}'.")
self._prefix = parsed_prefix
else:
raise TypeError(f"Invalid type for mask_input: {type(mask_input)}. Must be int or str.")
self._mask_int = self._prefix_to_mask_int(self._prefix)
@staticmethod
def _is_valid_ip_octet_str(octet_str: str) -> bool:
try:
octet_val = int(octet_str)
return 0 <= octet_val <= 255
except ValueError:
return False
@staticmethod
def _is_valid_ip_string(ip_str: str) -> bool:
parts = ip_str.split('.')
if len(parts) != 4:
return False
return all(IP4Mask._is_valid_ip_octet_str(p.strip()) for p in parts)
@staticmethod
def _netmask_str_to_prefix(netmask_str: str) -> Optional[int]:
if not IP4Mask._is_valid_ip_string(netmask_str):
return None
octets = [int(x) for x in netmask_str.split('.')]
mask_val = (octets[0] << 24) | (octets[1] << 16) | (octets[2] << 8) | octets[3]
binary_mask = bin(mask_val)[2:].zfill(32)
if not re.fullmatch(r"1*0*", binary_mask): # Must be contiguous 1s followed by 0s
return None
return binary_mask.count('1')
@staticmethod
def _prefix_to_mask_int(prefix: int) -> int:
if not (0 <= prefix <= 32): # Should be validated before calling
raise ValueError("Prefix out of range")
if prefix == 0:
return 0
return (0xFFFFFFFF << (32 - prefix)) & 0xFFFFFFFF
def get_mask_str(self) -> str:
return f"{(self._mask_int >> 24) & 0xFF}.{(self._mask_int >> 16) & 0xFF}.{(self._mask_int >> 8) & 0xFF}.{self._mask_int & 0xFF}"
def get_prefix_int(self) -> int:
return self._prefix
def __str__(self) -> str:
return self.get_mask_str()
def __repr__(self) -> str:
return f"IP4Mask({self._prefix})"
def __eq__(self, other):
if isinstance(other, IP4Mask):
return self._prefix == other._prefix
return False
class Class_IP4(SympyClassBase):
"""Clase híbrida para direcciones IPv4"""
@ -16,96 +100,88 @@ class Class_IP4(SympyClassBase):
def __init__(self, *args):
"""Inicialización de IP4"""
if len(args) == 1:
# Formato: "192.168.1.1/24" o "192.168.1.1 255.255.255.0"
input_str = args[0]
if '/' in input_str:
# Formato CIDR
ip_str, prefix_str = input_str.split('/')
prefix = int(prefix_str)
else:
# Formato con máscara
parts = input_str.split()
if len(parts) == 2:
ip_str, netmask_str = parts
prefix = self._netmask_str_to_prefix(netmask_str)
else:
ip_str = input_str
prefix = None
else:
# Formato: ("192.168.1.1", 24) o ("192.168.1.1", "255.255.255.0")
ip_str = args[0]
if len(args) > 1:
if isinstance(args[1], int):
prefix = args[1]
else:
prefix = self._netmask_str_to_prefix(args[1])
else:
prefix = None
self._raw_constructor_args = args # Store for __repr__
if not self._is_valid_ip_string(ip_str):
ip_str: str
self._mask_obj: Optional[IP4Mask] = None
if not args:
raise ValueError("IP4 constructor requires at least one argument (the IP string).")
ip_str_candidate = args[0]
if not isinstance(ip_str_candidate, str):
raise TypeError(f"First argument to IP4 must be a string (IP address), got {type(ip_str_candidate)}")
if len(args) == 1:
input_str = args[0]
# Try "ip/prefix"
if '/' in input_str:
parts = input_str.split('/', 1)
ip_str = parts[0].strip()
if len(parts) > 1 and parts[1].strip():
self._mask_obj = IP4Mask(parts[1].strip())
# If no prefix after '/', it's just an IP
# Try "ip mask_str" (space separated)
elif ' ' in input_str:
parts = input_str.split()
ip_str = parts[0].strip()
if len(parts) > 1 and parts[1].strip():
self._mask_obj = IP4Mask(parts[1].strip())
# If no mask after space, it's just an IP
else: # Just an IP string
ip_str = input_str.strip()
elif len(args) == 2:
ip_str = args[0].strip()
mask_arg = args[1]
if isinstance(mask_arg, IP4Mask): # Allow passing IP4Mask instance directly
self._mask_obj = mask_arg
elif isinstance(mask_arg, (str, int)): # Parser will pass str, programmatic use might pass int
self._mask_obj = IP4Mask(mask_arg)
else:
raise TypeError(f"Second argument (mask) for IP4 must be int, str, or IP4Mask instance, got {type(mask_arg)}")
else:
raise ValueError(f"IP4 constructor takes 1 or 2 arguments, got {len(args)}: {args}")
if not IP4Mask._is_valid_ip_string(ip_str): # Use IP4Mask's validator
raise ValueError(f"Invalid IP address format: {ip_str}")
if prefix is not None and not self._is_valid_prefix(prefix):
raise ValueError(f"Invalid prefix length: {prefix}")
# Convertir IP a entero para almacenamiento
ip_parts = [int(x) for x in ip_str.split('.')]
ip_int = (ip_parts[0] << 24) + (ip_parts[1] << 16) + (ip_parts[2] << 8) + ip_parts[3]
# Almacenar valores
self._ip_int = ip_int
self._prefix = prefix
self._ip_str = ip_str
ip_parts = [int(x) for x in ip_str.split('.')]
self._ip_int = (ip_parts[0] << 24) | (ip_parts[1] << 16) | (ip_parts[2] << 8) | ip_parts[3]
# Llamar al constructor base
super().__init__(ip_int, input_str)
def _is_valid_ip_string(self, ip_str: str) -> bool:
"""Verifica si el string es una IP válida"""
pattern = r'^(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})$'
match = re.match(pattern, ip_str)
if not match:
return False
# Verificar que cada octeto esté en rango
for octet in match.groups():
if not 0 <= int(octet) <= 255:
return False
return True
def _is_valid_prefix(self, prefix: int) -> bool:
"""Verifica si el prefijo es válido"""
return 0 <= prefix <= 32
def _netmask_str_to_prefix(self, netmask_str: str) -> Optional[int]:
"""Convierte máscara de red a longitud de prefijo"""
if not self._is_valid_ip_string(netmask_str):
return None
# Convertir máscara a binario
parts = [int(x) for x in netmask_str.split('.')]
binary = ''.join(f'{x:08b}' for x in parts)
# Contar 1's consecutivos desde la izquierda
prefix = 0
for bit in binary:
if bit == '1':
prefix += 1
else:
break
# Verificar que el resto sean 0's
if '1' in binary[prefix:]:
return None
return prefix
# Determine the 'original_str' for SympyClassBase's _sympystr.
# This string is what appears inside ClassName(...) in Sympy output.
# It should reflect the arguments as they would be if typed in brackets.
sympy_base_original_str: str
if len(args) == 1 and isinstance(args[0], str):
# Covers "1.1.1.1/24", "1.1.1.1 255.255.0.0", or just "1.1.1.1"
sympy_base_original_str = args[0]
elif len(args) == 2:
# Reconstruct as "ip_str;mask_representation"
mask_arg_for_repr = args[1]
if isinstance(mask_arg_for_repr, IP4Mask): # Should not happen from parser
mask_repr_str = str(mask_arg_for_repr.get_prefix_int())
elif isinstance(mask_arg_for_repr, int):
mask_repr_str = str(mask_arg_for_repr)
else: # string
mask_repr_str = str(mask_arg_for_repr) # e.g., "24" or "255.255.255.0"
sympy_base_original_str = f"{args[0]};{mask_repr_str}"
else: # Only ip_str was derived, no mask (or error caught earlier)
sympy_base_original_str = self._ip_str
super().__init__(self._ip_int, sympy_base_original_str)
def __repr__(self):
# This should be a valid Python expression to recreate the object.
arg_reprs = [repr(arg) for arg in self._raw_constructor_args]
return f"{self.__class__.__name__}({', '.join(arg_reprs)})"
def __str__(self):
"""Representación string para display"""
if self._prefix is not None:
return f"{self._ip_str}/{self._prefix}"
if self._mask_obj:
return f"{self._ip_str}/{self._mask_obj.get_prefix_int()}"
return self._ip_str
def _sympystr(self, printer):
@ -116,7 +192,8 @@ class Class_IP4(SympyClassBase):
def Helper(input_str):
"""Ayuda contextual para IP4"""
if re.match(r"^\s*IP4\b", input_str, re.IGNORECASE):
return 'Ej: IP4[192.168.1.1/24], IP4[10.0.0.1, 8], o IP4[172.16.0.5, 255.255.0.0]\nFunciones: NetworkAddress(), BroadcastAddress(), Nodes()'
return ('Ej: IP4[192.168.1.1/24], IP4[10.0.0.1;8], IP4[172.16.0.5;255.255.0.0]\n'
'Funciones: NetworkAddress(), BroadcastAddress(), Nodes(), get_netmask_str(), get_prefix_length()')
return None
@staticmethod
@ -125,57 +202,61 @@ class Class_IP4(SympyClassBase):
return [
("NetworkAddress", "Obtiene la dirección de red"),
("BroadcastAddress", "Obtiene la dirección de broadcast"),
("Nodes", "Cantidad de nodos disponibles"),
("Nodes", "Cantidad de nodos usables en la subred"),
("get_netmask_str", "Obtiene la máscara de red (ej: 255.255.255.0)"),
("get_prefix_length", "Obtiene la longitud del prefijo CIDR (ej: 24)"),
]
def get_netmask_str(self) -> Optional[str]:
"""Returns the netmask as a string (e.g., "255.255.255.0") if a mask is defined."""
return self._mask_obj.get_mask_str() if self._mask_obj else None
def get_prefix_length(self) -> Optional[int]:
"""Returns the prefix length (e.g., 24) if a mask is defined."""
return self._mask_obj.get_prefix_int() if self._mask_obj else None
def NetworkAddress(self):
"""Obtiene la dirección de red"""
if self._prefix is None:
raise ValueError("No prefix/mask defined")
prefix = self.get_prefix_length()
if prefix is None:
raise ValueError("No prefix/mask defined for NetworkAddress calculation.")
# Calcular máscara de red
mask = (0xffffffff >> (32 - self._prefix)) << (32 - self._prefix)
mask_int = IP4Mask._prefix_to_mask_int(prefix)
network_int = self._ip_int & mask_int
# Aplicar máscara
network = self._ip_int & mask
# Convertir a string
parts = [
(network >> 24) & 0xff,
(network >> 16) & 0xff,
(network >> 8) & 0xff,
network & 0xff
(network_int >> 24) & 0xFF,
(network_int >> 16) & 0xFF,
(network_int >> 8) & 0xFF,
network_int & 0xFF
]
network_str = '.'.join(str(x) for x in parts)
return Class_IP4(f"{network_str}/{self._prefix}")
return Class_IP4(network_str, prefix) # Return new IP4 object for the network
def BroadcastAddress(self):
"""Obtiene la dirección de broadcast"""
if self._prefix is None:
raise ValueError("No prefix/mask defined")
prefix = self.get_prefix_length()
if prefix is None:
raise ValueError("No prefix/mask defined for BroadcastAddress calculation.")
mask_int = IP4Mask._prefix_to_mask_int(prefix)
broadcast_int = self._ip_int | (~mask_int & 0xFFFFFFFF)
# Calcular máscara de red
mask = (0xffffffff >> (32 - self._prefix)) << (32 - self._prefix)
# Calcular broadcast
broadcast = self._ip_int | (~mask & 0xffffffff)
# Convertir a string
parts = [
(broadcast >> 24) & 0xff,
(broadcast >> 16) & 0xff,
(broadcast >> 8) & 0xff,
broadcast & 0xff
(broadcast_int >> 24) & 0xFF,
(broadcast_int >> 16) & 0xFF,
(broadcast_int >> 8) & 0xFF,
broadcast_int & 0xFF
]
broadcast_str = '.'.join(str(x) for x in parts)
return Class_IP4(f"{broadcast_str}/{self._prefix}")
return Class_IP4(broadcast_str, prefix) # Return new IP4 object for broadcast
def Nodes(self):
"""Obtiene el número de nodos disponibles"""
if self._prefix is None:
raise ValueError("No prefix/mask defined")
prefix = self.get_prefix_length()
if prefix is None:
raise ValueError("No prefix/mask defined for Nodes calculation.")
# 2^(32-prefix) - 2 (red y broadcast)
return 2 ** (32 - self._prefix) - 2
if prefix >= 31: # For /31 and /32, typically 0 usable host addresses in standard subnetting
return 0
return (2 ** (32 - prefix)) - 2

View File

@ -13,7 +13,8 @@ import re
# Importar componentes del CAS híbrido
from main_evaluation import HybridEvaluationEngine, EvaluationResult
from tl_popup import InteractiveResultManager
from sympy_Base import SympyClassBase
from tl_popup import InteractiveResultManager, PlotResult # <--- Asegurar que PlotResult se importa
from ip4_type import Class_IP4
from hex_type import Class_Hex
from bin_type import Class_Bin
@ -267,6 +268,7 @@ class HybridCalculatorApp:
self.output_text.tag_configure("equation", foreground="#c792ea")
self.output_text.tag_configure("info", foreground="#ffcb6b")
self.output_text.tag_configure("comment", foreground="#546e7a")
self.output_text.tag_configure("class_hint", foreground="#888888") # Gris para la pista de clase
self.output_text.tag_configure("type_hint", foreground="#6a6a6a")
# Tags para tipos especializados
@ -291,6 +293,7 @@ class HybridCalculatorApp:
self._debounce_job = self.root.after(300, self._evaluate_and_update)
def _handle_dot_autocomplete(self):
"""Maneja el autocompletado cuando se escribe un punto."""
self._close_autocomplete_popup()
cursor_index_str = self.input_text.index(tk.INSERT)
line_num_str, char_num_str = cursor_index_str.split('.')
@ -298,23 +301,28 @@ class HybridCalculatorApp:
char_idx_after_dot = int(char_num_str)
if char_idx_after_dot == 0: # Should not happen if a dot was typed
print("DEBUG: _handle_dot_autocomplete called with cursor at beginning of line somehow.")
print("DEBUG: Autocomplete: Cursor at beginning of line after dot. No action.")
return
text_before_dot = self.input_text.get(f"{current_line_num}.0", f"{current_line_num}.{char_idx_after_dot - 1}")
# Índice del punto en la línea actual (0-based)
dot_char_index_in_line = char_idx_after_dot - 1
# Texto en la línea actual HASTA el punto (sin incluirlo)
text_on_line_up_to_dot = self.input_text.get(f"{current_line_num}.0", f"{current_line_num}.{dot_char_index_in_line}")
# Si no hay nada o solo espacios antes del punto, ofrecer sugerencias globales
if not text_before_dot.strip():
stripped_text_before_dot = text_on_line_up_to_dot.strip()
# 1. Determinar si es un popup GLOBAL
if not stripped_text_before_dot:
print("DEBUG: Dot on empty line or after spaces. Offering global suggestions.")
suggestions = []
custom_classes_suggestions = [
custom_types_suggestions = [
("Hex", "Tipo Hexadecimal. Ej: Hex[FF]"),
("Bin", "Tipo Binario. Ej: Bin[1010]"),
("Dec", "Tipo Decimal. Ej: Dec[42]"),
("IP4", "Tipo Dirección IPv4. Ej: IP4[1.2.3.4/24]"),
("Chr", "Tipo Carácter. Ej: Chr[A]"),
]
suggestions.extend(custom_classes_suggestions)
suggestions.extend(custom_types_suggestions)
try:
sympy_functions = SympyHelper.PopupFunctionList()
@ -327,16 +335,34 @@ class HybridCalculatorApp:
self._show_autocomplete_popup(suggestions, is_global_popup=True)
return
# Si hay texto antes del punto, es para autocompletado de métodos de un objeto
obj_expr_str = text_before_dot.strip()
print(f"DEBUG: Autocomplete triggered for object. Expression: '{obj_expr_str}'")
# 2. Es un popup de OBJETO. Extraer la expresión del objeto.
obj_expr_str_candidate = ""
# Regex para `identificador_o_ClaseConCorchetes(.identificador_o_ClaseConCorchetes)*`
# Anclado al final de stripped_text_before_dot
obj_expr_regex = r"([a-zA-Z_][a-zA-Z0-9_]*(?:\[[^\]]*\])?(?:(?:\s*\.\s*[a-zA-Z_][a-zA-Z0-9_]*)(?:\[[^\]]*\])?)*)$"
match = re.search(obj_expr_regex, stripped_text_before_dot)
if not obj_expr_str:
# Esto no debería ocurrir si la lógica anterior para popup global es correcta
print("DEBUG: Object expression is empty. No autocomplete.")
if match:
obj_expr_str_candidate = match.group(1).replace(" ", "") # Quitar espacios como en "obj . method"
else:
# Heurística: si el regex no coincide, tomar todo stripped_text_before_dot.
# Esto podría capturar (a+b) o mi_func()
obj_expr_str_candidate = stripped_text_before_dot
# Validación simple para evitar evaluar cosas que claramente no son objetos
if not obj_expr_str_candidate or \
not re.match(r"^[a-zA-Z_0-9\(\)\[\]\.\"\'\+\-\*\/ ]*$", obj_expr_str_candidate) or \
obj_expr_str_candidate.endswith(("+", "-", "*", "/", "(", ",")):
print(f"DEBUG: Extracted expr '{obj_expr_str_candidate}' from '{stripped_text_before_dot}' not a valid object for dot autocomplete.")
return
obj_expr_str = obj_expr_str_candidate
print(f"DEBUG: Autocomplete for object. Extracted: '{obj_expr_str}' from: '{text_on_line_up_to_dot}'")
if not obj_expr_str: # Debería estar cubierto por el popup global, pero por si acaso.
print("DEBUG: Object expression is empty after extraction. No autocomplete.")
return
# Caso especial para el módulo sympy
# 3. Caso especial para el módulo sympy
if obj_expr_str == "sympy":
print(f"DEBUG: Detected 'sympy.', using SympyHelper for suggestions.")
try:
@ -349,20 +375,22 @@ class HybridCalculatorApp:
print(f"DEBUG: Error calling SympyHelper.PopupFunctionList(): {e}")
return
# Preprocesar para convertir sintaxis de corchetes a llamada de clase
# Ejemplo: Hex[FF] -> Hex('FF')
bracket_match = re.match(r"([A-Za-z_][A-Za-z0-9_]*)\[(.*)\]$", obj_expr_str)
if bracket_match:
class_name, arg = bracket_match.groups()
if arg.isdigit():
obj_expr_str = f"{class_name}({arg})"
else:
obj_expr_str = f"{class_name}('{arg}')"
print(f"DEBUG: Preprocessed bracket syntax to: '{obj_expr_str}'")
# 4. Preprocesar con BracketParser para sintaxis Clase[arg] y metodo[]
# Es importante transformar obj_expr_str ANTES de pasarlo a eval().
if '[' in obj_expr_str: # Optimización: solo llamar si hay corchetes
original_for_debug = obj_expr_str
# self.engine.parser es una instancia de BracketParser
obj_expr_str = self.engine.parser._transform_brackets(obj_expr_str)
if obj_expr_str != original_for_debug:
print(f"DEBUG: Preprocessed by BracketParser: '{original_for_debug}' -> '{obj_expr_str}'")
# 5. Evaluar la expresión del objeto
eval_context = self.engine._get_full_context() if hasattr(self.engine, '_get_full_context') else {}
obj = None
try:
if not obj_expr_str.strip(): # Seguridad adicional
print("DEBUG: Object expression became empty before eval. No action.")
return
print(f"DEBUG: Attempting to eval: '{obj_expr_str}'")
obj = eval(obj_expr_str, eval_context)
print(f"DEBUG: Eval successful. Object: {type(obj)}, Value: {obj}")
@ -370,10 +398,13 @@ class HybridCalculatorApp:
print(f"DEBUG: Error evaluating object expression '{obj_expr_str}': {e}")
return
# 6. Mostrar popup de autocompletado para el objeto
if obj is not None and hasattr(obj, 'PopupFunctionList'):
methods = obj.PopupFunctionList()
if methods:
self._show_autocomplete_popup(methods, is_global_popup=False)
# else: Podríamos añadir un fallback a dir(obj) aquí si se desea para objetos genéricos
# print(f"DEBUG: Object {type(obj)} has no PopupFunctionList. dir(obj) could be used.")
def _show_autocomplete_popup(self, suggestions, is_global_popup=False):
# suggestions: lista de tuplas (nombre, hint)
@ -570,13 +601,43 @@ class HybridCalculatorApp:
else:
output_parts.append((tag, str(result.result)))
# Añadir pista de clase para el resultado principal
primary_result_object = result.result
if not isinstance(primary_result_object, PlotResult): # PlotResult ya tiene su propio formato
class_display_name = ""
if isinstance(primary_result_object, SympyClassBase):
class_display_name = type(primary_result_object).__name__.replace("Class_", "")
elif isinstance(primary_result_object, sympy.logic.boolalg.BooleanAtom): # sympy.true/false
class_display_name = "Boolean"
elif isinstance(primary_result_object, sympy.Basic): # Objetos SymPy generales
if hasattr(primary_result_object, 'is_number') and primary_result_object.is_number:
if hasattr(primary_result_object, 'is_Integer') and primary_result_object.is_Integer:
class_display_name = "Integer"
elif hasattr(primary_result_object, 'is_Rational') and primary_result_object.is_Rational and not primary_result_object.is_Integer :
class_display_name = "Rational"
elif hasattr(primary_result_object, 'is_Float') and primary_result_object.is_Float:
class_display_name = "Float"
else:
class_display_name = "SympyNumber" # Otros números de SymPy
else: # Expresiones SymPy, símbolos, etc.
class_display_name = "Sympy"
elif isinstance(primary_result_object, bool): # bool de Python
class_display_name = "Boolean"
elif isinstance(primary_result_object, (int, float, str, list, dict, tuple, type(None))):
class_display_name = type(primary_result_object).__name__.capitalize()
if class_display_name == "Nonetype": class_display_name = "None"
# Nombres como 'Int', 'Float', 'Str', 'List', 'Dict', 'Tuple' están bien.
if class_display_name:
output_parts.append(("class_hint", f"[{class_display_name}]"))
# Mostrar evaluación numérica si existe
if result.numeric_result is not None and result.numeric_result != result.result:
output_parts.append(("numeric", f"{result.numeric_result}"))
output_parts.append(("numeric", f"{result.numeric_result}")) # El espacio se controlará en _display_output
# Mostrar información adicional
if result.info:
output_parts.append(("info", f" ({result.info})"))
output_parts.append(("info", f"({result.info})")) # El espacio se controlará en _display_output
return output_parts
@ -606,14 +667,24 @@ class HybridCalculatorApp:
pass
else:
# Mostrar partes de la línea
first_part = True
for tag, content in line_parts:
if not first_part and content:
self.output_text.insert(tk.END, " ; ")
if content:
for part_idx, (tag, content) in enumerate(line_parts):
if not content: # Omitir contenido vacío
continue
# Determinar si se necesita un separador antes de esta parte
if part_idx > 0:
prev_tag, prev_content = line_parts[part_idx-1] if part_idx > 0 else (None, None)
# No añadir separador si la parte actual es una "anotación" o si la parte anterior estaba vacía.
if tag not in ["class_hint", "numeric", "info"] and prev_content:
self.output_text.insert(tk.END, " ; ")
# 'numeric' e 'info' necesitan un espacio precedente si siguen a contenido.
elif tag in ["numeric", "info"] and prev_content:
self.output_text.insert(tk.END, " ")
# 'class_hint' se une directamente.
if content: # Asegurarse de que hay contenido antes de insertar
self.output_text.insert(tk.END, str(content), tag)
first_part = False
# Añadir nueva línea excepto para la última línea
if line_idx < len(output_data) - 1:

View File

@ -151,16 +151,24 @@ class BracketParser:
def replace_match(match):
class_name = match.group(1)
args_content = match.group(2).strip()
if not args_content:
# Caso: Class[] → Class()
return f'{class_name}()'
else:
# Caso: Class[args] → Class("args")
# Escapar comillas dobles en el contenido
escaped_content = args_content.replace('"', '\\"')
return f'{class_name}("{escaped_content}")'
# Split arguments by semicolon if present
# Each argument will be individually quoted.
# Example: Class[arg1; arg2] -> Class("arg1", "arg2")
# Example: Class[arg1] -> Class("arg1")
args_list = [arg.strip() for arg in args_content.split(';')]
processed_args = []
for arg_val in args_list:
# Escape backslashes first, then double quotes for string literals
escaped_arg = arg_val.replace('\\', '\\\\').replace('"', '\\"')
processed_args.append(f'"{escaped_arg}"')
return f'{class_name}({", ".join(processed_args)})'
# Aplicar transformación repetidamente hasta que no haya más cambios
transformed = line
while True:
@ -228,6 +236,8 @@ def test_bracket_parser():
# Sintaxis con corchetes
("Hex[FF]", 'Hex("FF")', "bracket_transform"),
("IP4[192.168.1.1/24]", 'IP4("192.168.1.1/24")', "bracket_transform"),
("IP4[192.168.1.1;24]", 'IP4("192.168.1.1"; "24")', "bracket_transform"),
("IP4[10.0.0.5;255.255.0.0]", 'IP4("10.0.0.5", "255.255.0.0")', "bracket_transform"),
("IP4[192.168.1.1/24].NetworkAddress[]", 'IP4("192.168.1.1/24").NetworkAddress()', "bracket_transform"),
("Bin[1010]", 'Bin("1010")', "bracket_transform"),