import tsnet # Open an example network and create a transient model inp_file = '/Users/luxing/Code/TSNet/examples/networks/Tnet0.inp' tm = tsnet.network.TransientModel(inp_file) # Set wavespeed tm.set_wavespeed(1200.) # m/s # Set time options dt = 0.01 tf = 25 # simulation period [s] tm.set_time(tf,dt) # Set valve closure tc = 0 # valve closure period [s] ts = 0 # valve closure start time [s] se = 0 # end open percentage [s] m = 1 # closure constant [dimensionless] valve_op = [tc, ts, se, m] tm.valve_closure('3',valve_op) # Initialize steady state simulation t0 = 0. # initialize the simulation at 0 [s] engine = 'PDD' # demand driven simulator tm = tsnet.simulation.Initializer(tm, t0, engine) # Transient simulation results_obj = 'Tnet0' # name of the object for saving simulation results friction = 'steady' tm1 = tsnet.simulation.MOCSimulator(tm, results_obj, friction) #%% tm = tsnet.network.TransientModel(inp_file) # Set wavespeed tm.set_wavespeed(1200.) # m/s # Set time options tm.set_time(tf,dt) tm.valve_closure('3',valve_op) # Initialize steady state simulation tm = tsnet.simulation.Initializer(tm, t0, engine) # Transient simulation friction = 'quasi-steady' tm2 = tsnet.simulation.MOCSimulator(tm, results_obj, friction) #%% tm = tsnet.network.TransientModel(inp_file) # Set wavespeed tm.set_wavespeed(1200.) # m/s # Set time options tm.set_time(tf,dt) # Set valve closure tm.valve_closure('3',valve_op) # Initialize steady state simulation tm = tsnet.simulation.Initializer(tm, t0, engine) # Transient simulation friction = 'unsteady' tm3 = tsnet.simulation.MOCSimulator(tm, results_obj, friction) #%% # report results import matplotlib.pyplot as plt node = '2' head1 = tm1.get_node(node).head t1 = tm1.simulation_timestamps head2 = tm2.get_node(node).head t2 = tm2.simulation_timestamps head3 = tm3.get_node(node).head t3 = tm3.simulation_timestamps fig = plt.figure(figsize=(8,5), dpi=80, facecolor='w', edgecolor='k') plt.plot(t1, head1, 'k',label='steady', linewidth=2.5) plt.plot(t2, head2, 'b', label='quasi-steady', linewidth=2.5) plt.plot(t3, head3, 'r',label='unsteady', linewidth=2.5) plt.xlim([t1[0],t1[-1]]) plt.xlabel("Time [s]") plt.ylabel("Pressure Head [m]") plt.legend(loc='best') plt.show() fig.savefig('tnet0_unsteady_friction.pdf', format='pdf',dpi=500)