import tsnet # Open an example network and create a transient model inp_file = '/Users/luxing/Code/TSNet/examples/networks/Tnet0.inp' tm = tsnet.network.TransientModel(inp_file) # Set wavespeed tm.set_wavespeed(1200.) # m/s # Set time options dt = 0.1 tf = 60 # simulation period [s] tm.set_time(tf,dt) # Set valve closure tc = 0 # valve closure period [s] ts = 2 # valve closure start time [s] se = 0 # end open percentage [s] m = 1 # closure constant [dimensionless] valve_op = [tc,ts,se,m] tm.valve_closure('3',valve_op) # Initialize steady state simulation t0 = 0. # initialize the simulation at 0 [s] engine = 'DD' # demand driven simulator tm = tsnet.simulation.Initializer(tm, t0, engine) tank_height = 100 # tank height [m] water_height = 50 # initial water level [m] tank_node = '2' tank_area = 100 # tank cross sectional area [m^2] tm.add_surge_tank(tank_node, [tank_area], 'open') # Transient simulation results_obj = 'Tnet0' # name of the object for saving simulation results tm1 = tsnet.simulation.MOCSimulator(tm, results_obj) #%% tm = tsnet.network.TransientModel(inp_file) # Set wavespeed tm.set_wavespeed(1200.) # m/s # Set time options tm.set_time(tf,dt) # Set valve closure tm.valve_closure('3',valve_op) # Initialize steady state simulation t0 = 0. # initialize the simulation at 0 [s] engine = 'DD' # demand driven simulator tm = tsnet.simulation.Initializer(tm, t0, engine) tank_height = 100 # tank height [m] water_height =40 # initial water level [m] tank_node = '2' tank_area = 10 # tank cross sectional area [m^2] tm.add_surge_tank(tank_node, [tank_area,tank_height,water_height], 'closed') # Transient simulation results_obj = 'Tnet0' # name of the object for saving simulation results tm2 = tsnet.simulation.MOCSimulator(tm, results_obj) #%% tm = tsnet.network.TransientModel(inp_file) # Set wavespeed tm.set_wavespeed(1200.) # m/s # Set time options tm.set_time(tf,dt) # Set valve closure tm.valve_closure('3',valve_op) # Initialize steady state simulation t0 = 0. # initialize the simulation at 0 [s] engine = 'DD' # demand driven simulator tm = tsnet.simulation.Initializer(tm, t0, engine) # Transient simulation results_obj = 'Tnet0' # name of the object for saving simulation results tm3 = tsnet.simulation.MOCSimulator(tm, results_obj) #%% # report results import matplotlib.pyplot as plt node = '3' norm_head_nl1 = tm1.get_node(node).head - tm1.get_node(node).head[0] norm_head_nl2 = tm2.get_node(node).head - tm2.get_node(node).head[0] norm_head_nl3 = tm3.get_node(node).head - tm3.get_node(node).head[0] fig1 = plt.figure(figsize=(8,5), dpi=80, facecolor='w', edgecolor='k') plt.plot(tm.simulation_timestamps,norm_head_nl1,'r-',label='w surge tank $A_s=10m^2$', linewidth=2.5) plt.plot(tm.simulation_timestamps,norm_head_nl2,'g-',label='w surge tank $A_s=100m^2$', linewidth=2.5) plt.plot(tm.simulation_timestamps,norm_head_nl3,'k-',label='wo surge tank', linewidth=2.5) plt.xlim([tm.simulation_timestamps[0],tm.simulation_timestamps[-1]]) plt.title('Node %s' %node) plt.xlabel("Time [s]") plt.ylabel("Pressure Head Change [m]") plt.legend(loc='best') plt.grid(False) plt.show() # fig1.savefig('./docs/figures/tnet1_node.png', format='png',dpi=100) #%% # report results import matplotlib.pyplot as plt node1 = tm1.get_node(tank_node) t1 = tm1.simulation_timestamps node2 = tm2.get_node(tank_node) t2 = tm1.simulation_timestamps fig = plt.figure(figsize=(8,5), dpi=80, facecolor='w', edgecolor='k') plt.plot(t1, node1.tank_flow_timeseries, 'r',label='w surge tank $A_s=10m^2$', linewidth=2.5) plt.plot(t2, node2.tank_flow_timeseries, 'g',label='w surge tank $A_s=100m^2$', linewidth=2.5) plt.xlim([t1[0],t1[-1]]) plt.xlabel("Time [s]") plt.ylabel("Flow into tank [m^3s]") plt.legend(loc='best') plt.grid(True) plt.show()