Testeado ultimos cambios en la funcion de afinidad.

This commit is contained in:
Miguel 2024-07-31 16:21:24 +02:00
parent 2262ac1f67
commit b31644553e
4 changed files with 958 additions and 1696 deletions

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -11,6 +11,8 @@ import json
from google.cloud import translate_v2 as translate from google.cloud import translate_v2 as translate
from google.oauth2 import service_account from google.oauth2 import service_account
import html import html
from tqdm import tqdm
import time
openai_client = OpenAI(api_key=openai_api_key()) openai_client = OpenAI(api_key=openai_api_key())
GOOGLE_APPLICATION_CREDENTIALS = "translate-431108-020c17463fbb.json" GOOGLE_APPLICATION_CREDENTIALS = "translate-431108-020c17463fbb.json"
@ -25,6 +27,28 @@ IDIOMAS = {
6: ("German", "de-DE"), 6: ("German", "de-DE"),
} }
def save_dataframe_with_retries(df, output_path, max_retries=5, retry_delay=5):
"""
Guarda un DataFrame en un archivo Excel, reintentando si el archivo está en uso.
:param df: El DataFrame a guardar.
:param output_path: La ruta del archivo donde se guardará el DataFrame.
:param max_retries: El número máximo de reintentos en caso de error.
:param retry_delay: El tiempo de espera (en segundos) entre cada reintento.
"""
retries = 0
while retries < max_retries:
try:
df.to_excel(output_path, index=False)
print("Archivo guardado exitosamente.")
return
except PermissionError as e:
print(f"Error de permiso: {e}. Reintentando en {retry_delay} segundos...")
retries += 1
time.sleep(retry_delay)
print(f"No se pudo guardar el archivo después de {max_retries} intentos.")
def configurar_logger(): def configurar_logger():
logger = logging.getLogger("translate_logger") logger = logging.getLogger("translate_logger")
@ -141,8 +165,11 @@ def translate_batch_openai(texts_dict, source_lang, target_lang):
def affinity_batch_openai(texts_dict): def affinity_batch_openai(texts_dict):
system_prompt = "Evaluate the semantic similarity between the following pairs of texts on a scale from 0 to 1. Return the similarity score in JSON format for each pair in the same order." system_prompt = (
original_list = list(texts_dict.keys()) "Evaluate the semantic similarity between the following table of pairs of texts in json format on a scale from 0 to 1. "
"Return the similarity scores for every row in JSON format as a list of numbers, without any additional text or formatting."
)
original_list = [transformar_texto(key) for key in texts_dict.keys()]
re_translated_list = list(texts_dict.values()) re_translated_list = list(texts_dict.values())
request_payload = json.dumps( request_payload = json.dumps(
@ -155,15 +182,32 @@ def affinity_batch_openai(texts_dict):
messages=[ messages=[
{ {
"role": "system", "role": "system",
"content": f"You are a semantic similarity evaluator.{system_prompt}", "content": system_prompt,
}, },
{"role": "user", "content": request_payload}, {"role": "user", "content": request_payload},
], ],
max_tokens=1500, max_tokens=1500,
temperature=0.3, temperature=0.3,
) )
response_payload = json.loads(response.choices[0].message.content.strip("'```json\n").strip("```")) response_content = response.choices[0].message.content
scores = response_payload
# Limpiar y convertir el contenido de la respuesta
cleaned_response_content = response_content.strip().strip("'```json").strip("```")
# Intentar convertir el contenido a JSON
try:
response_payload = json.loads(cleaned_response_content)
except json.JSONDecodeError:
raise ValueError("La respuesta no se pudo decodificar como JSON.")
# Manejar diferentes formatos de respuesta
if isinstance(response_payload, dict) and 'similarity_scores' in response_payload:
scores = response_payload['similarity_scores']
elif isinstance(response_payload, list):
scores = response_payload
else:
raise ValueError("Formato de respuesta inesperado.")
logger.info(f"Respuestas recibidas:\n{scores}") logger.info(f"Respuestas recibidas:\n{scores}")
if len(scores) != len(original_list): if len(scores) != len(original_list):
@ -173,6 +217,7 @@ def affinity_batch_openai(texts_dict):
return dict(zip(texts_dict.keys(), scores)) return dict(zip(texts_dict.keys(), scores))
def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10): def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10):
df = pd.read_excel(file_path) df = pd.read_excel(file_path)
source_col = "it-IT" source_col = "it-IT"
@ -252,7 +297,7 @@ def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10)
# Traduccion inversa # Traduccion inversa
# Actualizar el DataFrame con las traducciones y hacemos la Traduccion inversa # Actualizar el DataFrame con las traducciones y hacemos la Traduccion inversa
for index, row in df.iterrows(): for index, row in tqdm(df.iterrows(), total=df.shape[0], desc="Procesando traducciones"):
source_text = str(row[source_col]) source_text = str(row[source_col])
if source_text in translations: if source_text in translations:
df.at[index, target_col] = translations[source_text] df.at[index, target_col] = translations[source_text]
@ -270,6 +315,7 @@ def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10)
# Afinidades # Afinidades
# Se calculan las Afinidades # Se calculan las Afinidades
affinities = {} affinities = {}
batch_size = 10
for start_idx in range(0, num_texts, batch_size): for start_idx in range(0, num_texts, batch_size):
end_idx = min(start_idx + batch_size, num_texts) end_idx = min(start_idx + batch_size, num_texts)
batch_texts = dict(list(texts_to_translate.items())[start_idx:end_idx]) batch_texts = dict(list(texts_to_translate.items())[start_idx:end_idx])
@ -301,13 +347,13 @@ def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10)
# Actualizar el DataFrame con las Afinidades # Actualizar el DataFrame con las Afinidades
for index, row in df.iterrows(): for index, row in df.iterrows():
source_text = str(row[source_col]) source_text = str(row[source_col])
if source_text in translations: if source_text in affinities:
df.at[index, affinity_col] = affinities[source_text] df.at[index, affinity_col] = affinities[source_text]
output_path = os.path.join( output_path = os.path.join(
os.path.dirname(file_path), "3_master_export2translate_translated.xlsx" os.path.dirname(file_path), "3_master_export2translate_translated.xlsx"
) )
df.to_excel(output_path, index=False) save_dataframe_with_retries(df,output_path=output_path)
logger.info(f"Archivo traducido guardado en: {output_path}") logger.info(f"Archivo traducido guardado en: {output_path}")
print(f"Archivo traducido guardado en: {output_path}") print(f"Archivo traducido guardado en: {output_path}")