Testeado ultimos cambios en la funcion de afinidad.
This commit is contained in:
parent
2262ac1f67
commit
b31644553e
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
|
@ -11,6 +11,8 @@ import json
|
|||
from google.cloud import translate_v2 as translate
|
||||
from google.oauth2 import service_account
|
||||
import html
|
||||
from tqdm import tqdm
|
||||
import time
|
||||
|
||||
openai_client = OpenAI(api_key=openai_api_key())
|
||||
GOOGLE_APPLICATION_CREDENTIALS = "translate-431108-020c17463fbb.json"
|
||||
|
@ -25,6 +27,28 @@ IDIOMAS = {
|
|||
6: ("German", "de-DE"),
|
||||
}
|
||||
|
||||
def save_dataframe_with_retries(df, output_path, max_retries=5, retry_delay=5):
|
||||
"""
|
||||
Guarda un DataFrame en un archivo Excel, reintentando si el archivo está en uso.
|
||||
|
||||
:param df: El DataFrame a guardar.
|
||||
:param output_path: La ruta del archivo donde se guardará el DataFrame.
|
||||
:param max_retries: El número máximo de reintentos en caso de error.
|
||||
:param retry_delay: El tiempo de espera (en segundos) entre cada reintento.
|
||||
"""
|
||||
retries = 0
|
||||
while retries < max_retries:
|
||||
try:
|
||||
df.to_excel(output_path, index=False)
|
||||
print("Archivo guardado exitosamente.")
|
||||
return
|
||||
except PermissionError as e:
|
||||
print(f"Error de permiso: {e}. Reintentando en {retry_delay} segundos...")
|
||||
retries += 1
|
||||
time.sleep(retry_delay)
|
||||
|
||||
print(f"No se pudo guardar el archivo después de {max_retries} intentos.")
|
||||
|
||||
|
||||
def configurar_logger():
|
||||
logger = logging.getLogger("translate_logger")
|
||||
|
@ -141,8 +165,11 @@ def translate_batch_openai(texts_dict, source_lang, target_lang):
|
|||
|
||||
|
||||
def affinity_batch_openai(texts_dict):
|
||||
system_prompt = "Evaluate the semantic similarity between the following pairs of texts on a scale from 0 to 1. Return the similarity score in JSON format for each pair in the same order."
|
||||
original_list = list(texts_dict.keys())
|
||||
system_prompt = (
|
||||
"Evaluate the semantic similarity between the following table of pairs of texts in json format on a scale from 0 to 1. "
|
||||
"Return the similarity scores for every row in JSON format as a list of numbers, without any additional text or formatting."
|
||||
)
|
||||
original_list = [transformar_texto(key) for key in texts_dict.keys()]
|
||||
re_translated_list = list(texts_dict.values())
|
||||
|
||||
request_payload = json.dumps(
|
||||
|
@ -155,15 +182,32 @@ def affinity_batch_openai(texts_dict):
|
|||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": f"You are a semantic similarity evaluator.{system_prompt}",
|
||||
"content": system_prompt,
|
||||
},
|
||||
{"role": "user", "content": request_payload},
|
||||
],
|
||||
max_tokens=1500,
|
||||
temperature=0.3,
|
||||
)
|
||||
response_payload = json.loads(response.choices[0].message.content.strip("'```json\n").strip("```"))
|
||||
response_content = response.choices[0].message.content
|
||||
|
||||
# Limpiar y convertir el contenido de la respuesta
|
||||
cleaned_response_content = response_content.strip().strip("'```json").strip("```")
|
||||
|
||||
# Intentar convertir el contenido a JSON
|
||||
try:
|
||||
response_payload = json.loads(cleaned_response_content)
|
||||
except json.JSONDecodeError:
|
||||
raise ValueError("La respuesta no se pudo decodificar como JSON.")
|
||||
|
||||
# Manejar diferentes formatos de respuesta
|
||||
if isinstance(response_payload, dict) and 'similarity_scores' in response_payload:
|
||||
scores = response_payload['similarity_scores']
|
||||
elif isinstance(response_payload, list):
|
||||
scores = response_payload
|
||||
else:
|
||||
raise ValueError("Formato de respuesta inesperado.")
|
||||
|
||||
logger.info(f"Respuestas recibidas:\n{scores}")
|
||||
|
||||
if len(scores) != len(original_list):
|
||||
|
@ -173,6 +217,7 @@ def affinity_batch_openai(texts_dict):
|
|||
|
||||
return dict(zip(texts_dict.keys(), scores))
|
||||
|
||||
|
||||
def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10):
|
||||
df = pd.read_excel(file_path)
|
||||
source_col = "it-IT"
|
||||
|
@ -252,7 +297,7 @@ def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10)
|
|||
|
||||
# Traduccion inversa
|
||||
# Actualizar el DataFrame con las traducciones y hacemos la Traduccion inversa
|
||||
for index, row in df.iterrows():
|
||||
for index, row in tqdm(df.iterrows(), total=df.shape[0], desc="Procesando traducciones"):
|
||||
source_text = str(row[source_col])
|
||||
if source_text in translations:
|
||||
df.at[index, target_col] = translations[source_text]
|
||||
|
@ -270,6 +315,7 @@ def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10)
|
|||
# Afinidades
|
||||
# Se calculan las Afinidades
|
||||
affinities = {}
|
||||
batch_size = 10
|
||||
for start_idx in range(0, num_texts, batch_size):
|
||||
end_idx = min(start_idx + batch_size, num_texts)
|
||||
batch_texts = dict(list(texts_to_translate.items())[start_idx:end_idx])
|
||||
|
@ -301,13 +347,13 @@ def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10)
|
|||
# Actualizar el DataFrame con las Afinidades
|
||||
for index, row in df.iterrows():
|
||||
source_text = str(row[source_col])
|
||||
if source_text in translations:
|
||||
if source_text in affinities:
|
||||
df.at[index, affinity_col] = affinities[source_text]
|
||||
|
||||
output_path = os.path.join(
|
||||
os.path.dirname(file_path), "3_master_export2translate_translated.xlsx"
|
||||
)
|
||||
df.to_excel(output_path, index=False)
|
||||
save_dataframe_with_retries(df,output_path=output_path)
|
||||
logger.info(f"Archivo traducido guardado en: {output_path}")
|
||||
print(f"Archivo traducido guardado en: {output_path}")
|
||||
|
||||
|
|
Loading…
Reference in New Issue