Compare commits

..

No commits in common. "4e1dfbdbcda88829e6ffc4d8dc5616ccede41fab" and "b31644553ee032638f7e461d5d635b49911c0f60" have entirely different histories.

19 changed files with 58 additions and 235 deletions

Binary file not shown.

Binary file not shown.

1
data/system_prompt.txt Normal file
View File

@ -0,0 +1 @@
This texts are for an HMI industrial machine. Preserve the next words without translation: TILTER, ON, OFF, HMI, STOP, SD, USB, PLC, PID, FF, VFD, +A, +B, +CG, +D, +E, UPS, EMD, Pack, TableTop, Air, DCS, SKID, ALLEN BRADLEY, CPU, DANFOSS, Vetromeccanica, mBar, m/sec, mm, EEPROM, Ethernet, FIFO, PDF, RAM.

View File

@ -1 +0,0 @@
from .funciones_base import *

View File

@ -1,51 +0,0 @@
import re
import time
import pandas as pd
# Diccionario de idiomas
IDIOMAS = {
0: ("Italian", "it-IT"),
1: ("English", "en-GB"),
2: ("Portuguese", "pt-PT"),
3: ("Spanish", "es-ES"),
4: ("Russian", "ru-RU"),
5: ("French", "fr-FR"),
6: ("German", "de-DE"),
}
def mostrar_idiomas():
print("Selecciona el idioma de destino:")
for numero, (nombre, _) in IDIOMAS.items():
print(f"{numero}: {nombre}")
def transformar_texto(texto):
if pd.isnull(texto):
return texto
# Sustituir [[digits]] por <>
texto_transformado = re.sub(r'\[\[digits\]\]', '<>', texto)
# Sustituir cualquier <...> por <#>
texto_transformado = re.sub(r'<.*?>', '<#>', texto_transformado)
return texto_transformado
def save_dataframe_with_retries(df, output_path, max_retries=5, retry_delay=5):
"""
Guarda un DataFrame en un archivo Excel, reintentando si el archivo está en uso.
:param df: El DataFrame a guardar.
:param output_path: La ruta del archivo donde se guardará el DataFrame.
:param max_retries: El número máximo de reintentos en caso de error.
:param retry_delay: El tiempo de espera (en segundos) entre cada reintento.
"""
retries = 0
while retries < max_retries:
try:
df.to_excel(output_path, index=False)
print("Archivo guardado exitosamente.")
return
except PermissionError as e:
print(f"Error de permiso: {e}. Por favor cierre el archivo. Reintentando en {retry_delay} segundos...")
retries += 1
time.sleep(retry_delay)
print(f"No se pudo guardar el archivo después de {max_retries} intentos.")

View File

@ -2,7 +2,6 @@ import pandas as pd
import os
import re
from manejoArchivos import select_file
import funciones_comunes
def es_columna_tipo_xxYY(columna):
# Verificar si la columna es del tipo "xx-YY" usando una expresión regular
@ -23,7 +22,7 @@ def preprocesar_importacion(df_importacion):
# Sustituir en las demás columnas del tipo "xx-YY"
for columna in df_importacion.columns:
if columna != 'it-IT' and es_columna_tipo_xxYY(columna):
df_importacion.at[index, columna] = funciones_comunes.transformar_texto(sustituir_digitos(fila[columna]))
df_importacion.at[index, columna] = sustituir_digitos(fila[columna])
# Guardar la clave sustituida
df_importacion.at[index, 'it-IT'] = clave_sustituida

View File

@ -1,7 +1,14 @@
import pandas as pd
import os
import re
from manejoArchivos import select_file
import funciones_comunes
def transformar_texto(texto):
# Sustituir [[digits]] por <>
texto_transformado = re.sub(r'\[\[digits\]\]', '<>', texto)
# Sustituir cualquier <...> por <#>
texto_transformado = re.sub(r'<.*?>', '<#>', texto_transformado)
return texto_transformado
def exportar_para_traduccion(archivo_maestro):
if not os.path.exists(archivo_maestro):
@ -18,10 +25,10 @@ def exportar_para_traduccion(archivo_maestro):
# Transformar las demás columnas
for columna in df_maestro.columns[1:]:
df_export[columna] = df_maestro[columna].apply(lambda x: funciones_comunes.transformar_texto(str(x)) if pd.notnull(x) else x)
df_export[columna] = df_maestro[columna].apply(lambda x: transformar_texto(str(x)) if pd.notnull(x) else x)
# Guardar el archivo exportado
ruta_export = os.path.join(os.path.dirname(archivo_maestro), '2_master_export2translate.xlsx')
ruta_export = os.path.join(os.path.dirname(archivo_maestro), '.\\data\\2_master_export2translate.xlsx')
df_export.to_excel(ruta_export, index=False)
print(f"Archivo exportado para traducción: {ruta_export}")

View File

@ -1,77 +0,0 @@
import funciones_comunes
import pandas as pd
import os
import re
import logging
from manejoArchivos import select_file
def configurar_logger(ruta_log):
os.makedirs(".\\data", exist_ok=True)
logger = logging.getLogger('.\\data\\importacion_logger')
logger.setLevel(logging.INFO)
fh = logging.FileHandler(ruta_log, encoding='utf-8')
fh.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(message)s')
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger
def revertir_transformaciones(texto, digitos, secciones):
# Revertir <> a [[digits]]
for digito in digitos:
texto = texto.replace('<>', digito, 1)
# Revertir <#> a <...> usando las secciones originales
for seccion in secciones:
texto = texto.replace('<#>', f'<{seccion}>', 1)
return texto
def importar_traduccion(archivo_maestro, archivo_traduccion, target_lang_code, nivel_afinidad_minimo):
if not os.path.exists(archivo_maestro):
print("El archivo maestro no existe.")
return
master_col = target_lang_code
translated_col = f"{target_lang_code} Translated"
affinity_col = f"{target_lang_code} Affinity"
df_maestro = pd.read_excel(archivo_maestro)
df_traduccion = pd.read_excel(archivo_traduccion)
# Configurar el logger
directorio = os.path.dirname(archivo_maestro)
nombre_log = os.path.join(directorio, 'importacion_traduccion.log')
logger = configurar_logger(nombre_log)
# Iterar sobre las filas del archivo de traducción para actualizar el maestro
for index, fila in df_traduccion.iterrows():
clave = fila[df_maestro.columns[0]]
if clave in df_maestro[df_maestro.columns[0]].values:
# Comprobar afinidad y valores no nulos/vacíos
if fila[affinity_col] >= nivel_afinidad_minimo and pd.notnull(fila[translated_col]) and fila[translated_col] != "":
valor_traducido = fila[translated_col]
valor_original = df_maestro.loc[df_maestro[df_maestro.columns[0]] == clave, master_col].values[0]
if str(valor_original) != str(valor_traducido):
df_maestro.loc[df_maestro[df_maestro.columns[0]] == clave, master_col] = valor_traducido
logger.info(f'Fila {index}, Columna {translated_col}: "{valor_original}" actualizado a "{valor_traducido}"')
# Guardar el archivo maestro actualizado
funciones_comunes.save_dataframe_with_retries(df_maestro,output_path=archivo_maestro)
print(f"Traducciones importadas y archivo maestro actualizado: {archivo_maestro}. Detalles de los cambios en {nombre_log}")
if __name__ == "__main__":
archivo_maestro = ".\\data\\1_hmi_master_translates.xlsx"
archivo_traduccion = ".\\data\\3_master_export2translate_translated.xlsx"
nivel_afinidad_minimo = input("Introduce el nivel minimo de afinidad para importar (presiona Enter para usar el valor por defecto 0.5): ")
nivel_afinidad_minimo = float(nivel_afinidad_minimo) if nivel_afinidad_minimo else 0.5
funciones_comunes.mostrar_idiomas()
seleccion_idioma = int(input("Introduce el número del idioma de destino: "))
if seleccion_idioma not in funciones_comunes.IDIOMAS:
print("Selección inválida.")
else:
target_lang, target_lang_code = funciones_comunes.IDIOMAS[seleccion_idioma]
importar_traduccion(archivo_maestro, archivo_traduccion, target_lang_code, nivel_afinidad_minimo )

View File

@ -5,17 +5,50 @@ import re
import logging
from openai_api_key import openai_api_key
from google_api_key import google_api_key
from x2_master_export2translate import transformar_texto
import ollama
import json
from google.cloud import translate_v2 as translate
from google.oauth2 import service_account
import html
from tqdm import tqdm
import funciones_comunes
import time
openai_client = OpenAI(api_key=openai_api_key())
GOOGLE_APPLICATION_CREDENTIALS = "translate-431108-020c17463fbb.json"
# Diccionario de idiomas
IDIOMAS = {
1: ("English", "en-GB"),
2: ("Portuguese", "pt-PT"),
3: ("Spanish", "es-ES"),
4: ("Russian", "ru-RU"),
5: ("French", "fr-FR"),
6: ("German", "de-DE"),
}
def save_dataframe_with_retries(df, output_path, max_retries=5, retry_delay=5):
"""
Guarda un DataFrame en un archivo Excel, reintentando si el archivo está en uso.
:param df: El DataFrame a guardar.
:param output_path: La ruta del archivo donde se guardará el DataFrame.
:param max_retries: El número máximo de reintentos en caso de error.
:param retry_delay: El tiempo de espera (en segundos) entre cada reintento.
"""
retries = 0
while retries < max_retries:
try:
df.to_excel(output_path, index=False)
print("Archivo guardado exitosamente.")
return
except PermissionError as e:
print(f"Error de permiso: {e}. Reintentando en {retry_delay} segundos...")
retries += 1
time.sleep(retry_delay)
print(f"No se pudo guardar el archivo después de {max_retries} intentos.")
def configurar_logger():
logger = logging.getLogger("translate_logger")
@ -54,6 +87,12 @@ def google_translate(text, target_language):
logger = configurar_logger()
def mostrar_idiomas():
print("Selecciona el idioma de destino:")
for numero, (nombre, _) in IDIOMAS.items():
print(f"{numero}: {nombre}")
def read_system_prompt():
try:
with open(".\\data\\system_prompt.txt", "r", encoding="utf-8") as file:
@ -130,7 +169,7 @@ def affinity_batch_openai(texts_dict):
"Evaluate the semantic similarity between the following table of pairs of texts in json format on a scale from 0 to 1. "
"Return the similarity scores for every row in JSON format as a list of numbers, without any additional text or formatting."
)
original_list = [funciones_comunes.transformar_texto(key) for key in texts_dict.keys()]
original_list = [transformar_texto(key) for key in texts_dict.keys()]
re_translated_list = list(texts_dict.values())
request_payload = json.dumps(
@ -204,7 +243,7 @@ def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10)
if source_translated_col in df.columns
else ""
)
processed_text = funciones_comunes.transformar_texto(source_text)
processed_text = transformar_texto(source_text)
if traducir_todo:
if texto_requiere_traduccion(processed_text):
@ -314,7 +353,7 @@ def main(file_path, target_lang_code, target_lang, traducir_todo, batch_size=10)
output_path = os.path.join(
os.path.dirname(file_path), "3_master_export2translate_translated.xlsx"
)
funciones_comunes.save_dataframe_with_retries(df,output_path=output_path)
save_dataframe_with_retries(df,output_path=output_path)
logger.info(f"Archivo traducido guardado en: {output_path}")
print(f"Archivo traducido guardado en: {output_path}")
@ -323,12 +362,12 @@ if __name__ == "__main__":
batch_size = 20
translate_file = ".\\data\\2_master_export2translate.xlsx"
funciones_comunes.mostrar_idiomas()
mostrar_idiomas()
seleccion_idioma = int(input("Introduce el número del idioma de destino: "))
if seleccion_idioma not in funciones_comunes.IDIOMAS:
if seleccion_idioma not in IDIOMAS:
print("Selección inválida.")
else:
target_lang, target_lang_code = funciones_comunes.IDIOMAS[seleccion_idioma]
target_lang, target_lang_code = IDIOMAS[seleccion_idioma]
traducir_todo = (
input("¿Desea traducir todas las celdas (s/n)? ").strip().lower() == "s"
)

View File

@ -1,94 +0,0 @@
import funciones_comunes
import pandas as pd
import os
import re
import logging
from manejoArchivos import select_file
def configurar_logger(ruta_log):
os.makedirs(".\\data", exist_ok=True)
logger = logging.getLogger(".\\data\\importacion_logger")
logger.setLevel(logging.INFO)
fh = logging.FileHandler(ruta_log, encoding="utf-8")
fh.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(message)s")
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger
def revertir_transformaciones(texto, digitos, secciones):
# Revertir <> a [[digits]]
for digito in digitos:
texto = texto.replace("<>", digito, 1)
# Revertir <#> a <...> usando las secciones originales
for seccion in secciones:
texto = texto.replace("<#>", f"<{seccion}>", 1)
return texto
def complete_emptys(archivo_maestro, target_lang_code, second_lang_code):
if not os.path.exists(archivo_maestro):
print("El archivo maestro no existe.")
return
master_col = target_lang_code
second_col = second_lang_code
df_maestro = pd.read_excel(archivo_maestro)
# Configurar el logger
directorio = os.path.dirname(archivo_maestro)
nombre_log = os.path.join(directorio, "importacion_traduccion.log")
logger = configurar_logger(nombre_log)
# Iterar sobre las filas del archivo de traducción para actualizar el maestro
for index, fila in df_maestro.iterrows():
clave = fila[df_maestro.columns[0]]
if fila[master_col] == "" or pd.isnull(fila[master_col]):
if pd.notnull(fila[second_col]) and fila[second_col] != "":
df_maestro.loc[
df_maestro[df_maestro.columns[0]] == clave, master_col
] = fila[second_col]
logger.info(
f'Fila {index}, Columna {master_col}: " actualizado a "{fila[second_col]}"'
)
else:
df_maestro.loc[
df_maestro[df_maestro.columns[0]] == clave, master_col
] = fila[df_maestro.columns[0]]
logger.info(
f'Fila {index}, Columna {master_col}: " actualizado a "{fila[df_maestro.columns[0]]}"'
)
# Guardar el archivo maestro actualizado
funciones_comunes.save_dataframe_with_retries(
df_maestro, output_path=archivo_maestro
)
print(
f"Traducciones importadas y archivo maestro actualizado: {archivo_maestro}. Detalles de los cambios en {nombre_log}"
)
if __name__ == "__main__":
archivo_maestro = ".\\data\\1_hmi_master_translates.xlsx"
funciones_comunes.mostrar_idiomas()
seleccion_idioma = int(input("Introduce el número del idioma de destino: "))
if seleccion_idioma not in funciones_comunes.IDIOMAS:
print("Selección inválida.")
exit
seleccion_idioma_secundario = int(
input(
"Introduce el número del idioma de secundario para copiar desde en caso de vacios: "
)
)
if seleccion_idioma_secundario not in funciones_comunes.IDIOMAS:
print("Selección inválida.")
exit
_, target_lang_code = funciones_comunes.IDIOMAS[seleccion_idioma]
_, second_lang_code = funciones_comunes.IDIOMAS[seleccion_idioma_secundario]
complete_emptys(archivo_maestro, target_lang_code, second_lang_code)