53 lines
1.8 KiB
Python
53 lines
1.8 KiB
Python
|
# services/llm/ollama_service.py
|
||
|
"""
|
||
|
Ollama service implementation
|
||
|
"""
|
||
|
import ollama
|
||
|
import json
|
||
|
from typing import Dict, List
|
||
|
from .base import LLMService
|
||
|
|
||
|
class OllamaService(LLMService):
|
||
|
def __init__(self, model: str = "llama3.1"):
|
||
|
self.model = model
|
||
|
|
||
|
def generate_text(self, prompt: str) -> str:
|
||
|
try:
|
||
|
response = ollama.generate(
|
||
|
model=self.model,
|
||
|
prompt=prompt
|
||
|
)
|
||
|
return response["response"]
|
||
|
except Exception as e:
|
||
|
print(f"Error in Ollama API call: {e}")
|
||
|
return None
|
||
|
|
||
|
def get_similarity_scores(self, texts_pairs: Dict[str, List[str]]) -> List[float]:
|
||
|
system_prompt = (
|
||
|
"Evaluate the semantic similarity between the following table of pairs of texts in json format on a scale from 0 to 1. "
|
||
|
"Return the similarity scores for every row in JSON format as a list of numbers, without any additional text or formatting."
|
||
|
)
|
||
|
|
||
|
request_payload = json.dumps(texts_pairs)
|
||
|
prompt = f"{system_prompt}\n\n{request_payload}"
|
||
|
|
||
|
try:
|
||
|
response = ollama.generate(
|
||
|
model=self.model,
|
||
|
prompt=prompt
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
scores = json.loads(response["response"].strip())
|
||
|
if isinstance(scores, dict) and "similarity_scores" in scores:
|
||
|
return scores["similarity_scores"]
|
||
|
elif isinstance(scores, list):
|
||
|
return scores
|
||
|
else:
|
||
|
raise ValueError("Unexpected response format")
|
||
|
except json.JSONDecodeError:
|
||
|
raise ValueError("Could not decode response as JSON")
|
||
|
|
||
|
except Exception as e:
|
||
|
print(f"Error in Ollama similarity calculation: {e}")
|
||
|
return None
|