# services/llm/openai_service.py """ OpenAI service implementation """ from openai import OpenAI from typing import Dict, List import json from .base import LLMService from config.api_keys import APIKeyManager class OpenAIService(LLMService): def __init__(self, model: str = "gpt-4o-mini", temperature: float = 0.3): api_key = APIKeyManager.get_openai_key() if not api_key: raise ValueError("OpenAI API key not found. Please set up your API keys.") self.client = OpenAI(api_key=api_key) self.model = model self.temperature = temperature def generate_text(self, prompt: str) -> str: try: response = self.client.chat.completions.create( model=self.model, messages=[{"role": "user", "content": prompt}], temperature=self.temperature, max_tokens=1500 ) return response.choices[0].message.content except Exception as e: print(f"Error in OpenAI API call: {e}") return None def get_similarity_scores(self, texts_pairs: Dict[str, List[str]]) -> List[float]: system_prompt = ( "Evaluate the semantic similarity between the following table of pairs of texts in json format on a scale from 0 to 1. " "Return the similarity scores for every row in JSON format as a list of numbers, without any additional text or formatting." ) request_payload = json.dumps(texts_pairs) try: response = self.client.chat.completions.create( model=self.model, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": request_payload} ], temperature=self.temperature, max_tokens=1500 ) response_content = response.choices[0].message.content cleaned_response = response_content.strip().strip("'```json").strip("```") try: scores = json.loads(cleaned_response) if isinstance(scores, dict) and "similarity_scores" in scores: return scores["similarity_scores"] elif isinstance(scores, list): return scores else: raise ValueError("Unexpected response format") except json.JSONDecodeError: raise ValueError("Could not decode response as JSON") except Exception as e: print(f"Error in OpenAI similarity calculation: {e}") return None