# services/llm/claude_service.py """ Claude (Anthropic) service implementation """ import anthropic from typing import Dict, List import json from .base import LLMService from config.api_keys import APIKeyManager from utils.logger import setup_logger class ClaudeService(LLMService): def __init__( self, model: str = "claude-3-7-sonnet-20250219", # Debemos usar el modelo claude-3-7-sonnet-20250219 temperature: float = 0.3, max_tokens: int = 16000, ): api_key = APIKeyManager.get_claude_key() if not api_key: raise ValueError( "Claude API key not found. Please set the CLAUDE_API_KEY environment variable." ) self.client = anthropic.Anthropic(api_key=api_key) self.model = model self.temperature = temperature self.max_tokens = max_tokens self.logger = setup_logger("claude") def generate_text(self, prompt: str) -> str: self.logger.info(f"--- PROMPT ---\n{prompt}") try: message = self.client.messages.create( model=self.model, max_tokens=self.max_tokens, temperature=self.temperature, messages=[ { "role": "user", "content": prompt, } ], ) response_content = message.content[0].text self.logger.info(f"--- RESPONSE ---\n{response_content}") return response_content except Exception as e: self.logger.error(f"Error in Claude API call: {e}") print(f"Error in Claude API call: {e}") return None def get_similarity_scores(self, texts_pairs: Dict[str, List[str]]) -> List[float]: # Claude's API doesn't have a dedicated similarity or JSON mode endpoint as straightforward as others. # We will instruct it to return JSON. system_prompt = ( "You are an expert in semantic analysis. Evaluate the semantic similarity between the pairs of texts provided. " "Return your response ONLY as a JSON object containing a single key 'similarity_scores' with a list of floats from 0.0 to 1.0. " "Do not include any other text, explanation, or markdown formatting. The output must be a valid JSON." ) request_payload = json.dumps(texts_pairs) try: message = self.client.messages.create( model=self.model, max_tokens=self.max_tokens, temperature=self.temperature, system=system_prompt, messages=[ { "role": "user", "content": request_payload, } ], ) response_content = message.content[0].text try: # Find the JSON part of the response json_start = response_content.find("{") json_end = response_content.rfind("}") + 1 if json_start == -1 or json_end == 0: raise ValueError("No JSON object found in the response.") json_str = response_content[json_start:json_end] scores_data = json.loads(json_str) if isinstance(scores_data, dict) and "similarity_scores" in scores_data: return scores_data["similarity_scores"] else: raise ValueError("Unexpected JSON format from Claude.") except (json.JSONDecodeError, ValueError) as e: print(f"Error decoding Claude JSON response: {e}") raise ValueError( "Could not decode or parse similarity scores from Claude response." ) except Exception as e: print(f"Error in Claude similarity calculation: {e}") return None