# services/llm/gemini_service.py """ Gemini (Google) service implementation """ import google.generativeai as genai from typing import Dict, List import json from .base import LLMService from config.api_keys import APIKeyManager from utils.logger import setup_logger class GeminiService(LLMService): def __init__( self, model: str = "gemini-1.5-flash", temperature: float = 0.3, max_tokens: int = 16000, ): api_key = APIKeyManager.get_gemini_key() if not api_key: raise ValueError( "Gemini API key not found. Please set the GEMINI_API_KEY environment variable." ) genai.configure(api_key=api_key) self.model = genai.GenerativeModel(model) self.temperature = temperature self.max_tokens = max_tokens self.logger = setup_logger("gemini") def generate_text(self, prompt: str) -> str: self.logger.info(f"--- PROMPT ---\n{prompt}") try: generation_config = genai.types.GenerationConfig( max_output_tokens=self.max_tokens, temperature=self.temperature ) response = self.model.generate_content( prompt, generation_config=generation_config ) response_content = response.text self.logger.info(f"--- RESPONSE ---\n{response_content}") return response_content except Exception as e: self.logger.error(f"Error in Gemini API call: {e}") print(f"Error in Gemini API call: {e}") return None def get_similarity_scores(self, texts_pairs: Dict[str, List[str]]) -> List[float]: system_prompt = ( "You are an expert in semantic analysis. Evaluate the semantic similarity between the pairs of texts provided. " "Return your response ONLY as a JSON object containing a single key 'similarity_scores' with a list of floats from 0.0 to 1.0. " "Do not include any other text, explanation, or markdown formatting. The output must be a valid JSON." ) request_payload = json.dumps(texts_pairs) full_prompt = f"{system_prompt}\n\n{request_payload}" try: generation_config = genai.types.GenerationConfig( max_output_tokens=self.max_tokens, temperature=self.temperature, response_mime_type="application/json", ) response = self.model.generate_content( full_prompt, generation_config=generation_config ) response_content = response.text try: scores_data = json.loads(response_content) if isinstance(scores_data, dict) and "similarity_scores" in scores_data: return scores_data["similarity_scores"] else: raise ValueError("Unexpected JSON format from Gemini.") except (json.JSONDecodeError, ValueError) as e: print(f"Error decoding Gemini JSON response: {e}") raise ValueError( "Could not decode or parse similarity scores from Gemini response." ) except Exception as e: print(f"Error in Gemini similarity calculation: {e}") return None