Iniciando segunda etapa

This commit is contained in:
Miguel 2025-04-18 23:47:18 +02:00
parent 75cd67c446
commit b2d3f0f5bf
17 changed files with 2646 additions and 3330 deletions

View File

@ -1,93 +0,0 @@
{
"block_name": "BlenderCtrl_ProdModeInit",
"block_number": 2012,
"language": "LAD",
"block_comment": "",
"interface": {
"Return": [
{
"name": "Ret_Val",
"datatype": "Void"
}
]
},
"networks": [
{
"id": "9",
"title": "PID Reset Integral",
"comment": "",
"logic": [
{
"instruction_uid": "21",
"uid": "21",
"type": "Call",
"block_name": "BlenderPID_PIDResInteg",
"block_type": "FC",
"inputs": {
"en": {
"type": "powerrail"
}
},
"outputs": {}
}
]
},
{
"id": "1A",
"title": "Ctrl Init Errors",
"comment": "",
"logic": [
{
"instruction_uid": "21",
"uid": "21",
"type": "Call",
"block_name": "BlenderCtrl_InitErrors",
"block_type": "FC",
"inputs": {
"en": {
"type": "powerrail"
}
},
"outputs": {}
}
]
},
{
"id": "2B",
"title": "RunOut Counter",
"comment": "",
"logic": [
{
"instruction_uid": "23",
"uid": "23",
"type": "Move",
"template_values": {
"Card": "Cardinality"
},
"inputs": {
"en": {
"type": "powerrail"
},
"in": {
"uid": "21",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Real",
"value": 0.0
}
},
"outputs": {
"out1": [
{
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"HMI_Variables_Status\".\"Analog_Values\".\"TP301RunOutCount\""
}
]
}
}
]
}
]
}

View File

@ -1,96 +0,0 @@
{
"block_name": "BlenderCtrl_ProdModeInit",
"block_number": 2012,
"language": "LAD",
"block_comment": "",
"interface": {
"Return": [
{
"name": "Ret_Val",
"datatype": "Void"
}
]
},
"networks": [
{
"id": "9",
"title": "PID Reset Integral",
"comment": "",
"logic": [
{
"instruction_uid": "21",
"uid": "21",
"type": "Call_FC_scl",
"block_name": "BlenderPID_PIDResInteg",
"block_type": "FC",
"inputs": {
"en": {
"type": "powerrail"
}
},
"outputs": {},
"scl": "BlenderPID_PIDResInteg();"
}
]
},
{
"id": "1A",
"title": "Ctrl Init Errors",
"comment": "",
"logic": [
{
"instruction_uid": "21",
"uid": "21",
"type": "Call_FC_scl",
"block_name": "BlenderCtrl_InitErrors",
"block_type": "FC",
"inputs": {
"en": {
"type": "powerrail"
}
},
"outputs": {},
"scl": "BlenderCtrl_InitErrors();"
}
]
},
{
"id": "2B",
"title": "RunOut Counter",
"comment": "",
"logic": [
{
"instruction_uid": "23",
"uid": "23",
"type": "Move_scl",
"template_values": {
"Card": "Cardinality"
},
"inputs": {
"en": {
"type": "powerrail"
},
"in": {
"uid": "21",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Real",
"value": 0.0
}
},
"outputs": {
"out1": [
{
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"HMI_Variables_Status\".\"Analog_Values\".\"TP301RunOutCount\""
}
]
},
"scl": "\"HMI_Variables_Status\".\"Analog_Values\".\"TP301RunOutCount\" := 0.0;"
}
]
}
]
}

View File

@ -1,35 +0,0 @@
// Block Name (Original): BlenderCtrl_ProdModeInit
// Block Number: 2012
// Original Language: LAD
FUNCTION_BLOCK "BlenderCtrl_ProdModeInit"
{ S7_Optimized_Access := 'TRUE' }
VERSION : 0.1
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR_IN_OUT
END_VAR
VAR_TEMP
END_VAR
BEGIN
// Network 1: PID Reset Integral
BlenderPID_PIDResInteg();
// Network 2: Ctrl Init Errors
BlenderCtrl_InitErrors();
// Network 3: RunOut Counter
"HMI_Variables_Status"."Analog_Values"."TP301RunOutCount" := 0.0;
END_FUNCTION_BLOCK

View File

@ -157,17 +157,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19000\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19000\""
}
},
"outputs": {}
@ -293,17 +293,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "32",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "29",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "32",
"source_pin": "out"
}
},
"outputs": {}
@ -357,17 +357,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "35",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "34",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "35",
"source_pin": "out"
}
},
"outputs": {}
@ -844,17 +844,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "29",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "29",
"source_pin": "out"
}
},
"outputs": {}
@ -1232,17 +1232,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "37",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "34",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "37",
"source_pin": "out"
}
},
"outputs": {}
@ -1361,13 +1361,6 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 6
},
"in1": {
"uid": "22",
"scope": "GlobalVariable",
@ -1379,6 +1372,13 @@
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 6
}
},
"outputs": {}
@ -1434,13 +1434,6 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 5
},
"in1": {
"uid": "22",
"scope": "GlobalVariable",
@ -1452,6 +1445,13 @@
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 5
}
},
"outputs": {}
@ -1549,13 +1549,6 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 3
},
"in1": {
"uid": "22",
"scope": "GlobalVariable",
@ -1567,6 +1560,13 @@
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 3
}
},
"outputs": {}
@ -1743,17 +1743,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19001\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
},
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19001\""
}
},
"outputs": {}
@ -1855,17 +1855,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
}
},
"outputs": {}
@ -1943,17 +1943,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19002\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
},
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19002\""
}
},
"outputs": {}
@ -2037,17 +2037,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19003\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
},
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19003\""
}
},
"outputs": {}
@ -2674,17 +2674,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "26",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
}
},
"outputs": {}
@ -2819,17 +2819,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "28",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "28",
"source_pin": "out"
}
},
"outputs": {}
@ -2986,17 +2986,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "26",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
}
},
"outputs": {}
@ -3131,17 +3131,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "26",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
}
},
"outputs": {}
@ -3432,17 +3432,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "23",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19011\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "26",
"source_pin": "out"
},
"bit": {
"uid": "23",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19011\""
}
},
"outputs": {}

View File

@ -161,17 +161,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19000\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19000\""
}
},
"outputs": {}
@ -301,17 +301,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "32",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "29",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "32",
"source_pin": "out"
}
},
"outputs": {},
@ -368,17 +368,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "35",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "34",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "35",
"source_pin": "out"
}
},
"outputs": {},
@ -871,17 +871,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "29",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "29",
"source_pin": "out"
}
},
"outputs": {},
@ -1276,17 +1276,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "37",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "34",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "37",
"source_pin": "out"
}
},
"outputs": {},
@ -1409,13 +1409,6 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 6
},
"in1": {
"uid": "22",
"scope": "GlobalVariable",
@ -1427,6 +1420,13 @@
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 6
}
},
"outputs": {},
@ -1485,13 +1485,6 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 5
},
"in1": {
"uid": "22",
"scope": "GlobalVariable",
@ -1503,6 +1496,13 @@
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 5
}
},
"outputs": {},
@ -1605,13 +1605,6 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 3
},
"in1": {
"uid": "22",
"scope": "GlobalVariable",
@ -1623,6 +1616,13 @@
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"in2": {
"uid": "23",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Int",
"value": 3
}
},
"outputs": {},
@ -1808,17 +1808,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19001\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
},
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19001\""
}
},
"outputs": {},
@ -1925,17 +1925,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "24",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
}
},
"outputs": {},
@ -2017,17 +2017,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19002\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
},
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19002\""
}
},
"outputs": {},
@ -2115,17 +2115,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19003\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "25",
"source_pin": "out"
},
"bit": {
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19003\""
}
},
"outputs": {},
@ -2782,17 +2782,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "26",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
}
},
"outputs": {},
@ -2931,17 +2931,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "28",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "28",
"source_pin": "out"
}
},
"outputs": {},
@ -3102,17 +3102,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "26",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
}
},
"outputs": {},
@ -3251,17 +3251,17 @@
},
"negated_pins": {},
"inputs": {
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
},
"in1": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "26",
"source_pin": "out"
},
"in2": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "27",
"source_pin": "out"
}
},
"outputs": {},
@ -3562,17 +3562,17 @@
"template_values": {},
"negated_pins": {},
"inputs": {
"bit": {
"uid": "23",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19011\""
},
"in": {
"type": "connection",
"source_instruction_type": "Contact",
"source_instruction_uid": "26",
"source_pin": "out"
},
"bit": {
"uid": "23",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"M19011\""
}
},
"outputs": {}

View File

@ -29,7 +29,7 @@ BEGIN
// Network 1: Clock Generation
Clock Signal();
Clock_Signal();
// Network 2: Machine Init
@ -47,12 +47,12 @@ BEGIN
// RLO: "gIN_LinePressCO2Ok"
// RLO: "gWorkshopTest"
// RLO: "gWorkshopTest" AND "gWorkshop_Co2_Presence"
// RLO: ("gWorkshopTest" AND "gWorkshop_Co2_Presence") AND "gWorkshop_CIP_Signals"
// RLO: ("gIN_LinePressCO2Ok" OR (("gWorkshopTest" AND "gWorkshop_Co2_Presence") AND "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered"
// RLO: "Disable_Bit"
// RLO: ((("gIN_LinePressCO2Ok" OR (("gWorkshopTest" AND "gWorkshop_Co2_Presence") AND "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered") OR "Disable_Bit") AND "gIN_VoltageOk"
"gBlenderSuppliesOk" := ((("gIN_LinePressCO2Ok" OR (("gWorkshopTest" AND "gWorkshop_Co2_Presence") AND "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered") OR "Disable_Bit") AND "gIN_VoltageOk";
// RLO: "gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")
// RLO: ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")
// RLO: ("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered"
// RLO: (NOT "Disable_Bit")
// RLO: (("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered") OR (NOT "Disable_Bit") AND "gIN_VoltageOk"
"gBlenderSuppliesOk" := (("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered") OR (NOT "Disable_Bit") AND "gIN_VoltageOk";
// Network 6: Blender State Num
@ -69,49 +69,49 @@ BEGIN
// Network 9: CIp Mode
// RLO: "HMI_Variables_Status"."System"."Blender_Prod_CIP"
"gBlenderCIPMode" := "HMI_Variables_Status"."System"."Blender_Prod_CIP";
IF "HMI_Variables_Status"."System"."Blender_Prod_CIP" THEN
// RLO: (NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP")
"gBlenderCIPMode" := (NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP");
IF (NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP") THEN
"HMI_Variables_Status"."Procedures"."BlenderStateNum" := 19;
END_IF;
// Network 10: Error Faults
// RLO: "AUX FALSE"
// RLO: (NOT "AUX FALSE")
// Network 11: Filler Bottle Count Used to push Product
// RLO: "System_RunOut_Variables"."ProdPipeRunOutWaterCount"
"System_RunOut_Variables"."ProdPipeRunOutFillerBott" := "System_RunOut_Variables"."ProdPipeRunOutWaterCount";
// RLO: (NOT "System_RunOut_Variables"."ProdPipeRunOutWaterCount")
"System_RunOut_Variables"."ProdPipeRunOutFillerBott" := (NOT "System_RunOut_Variables"."ProdPipeRunOutWaterCount");
// Network 12: Water Bypass Enable
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass"
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair"
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation"
// RLO: ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation")) AND "Blender_Variables_Pers"."gWaterRecipe"
// RLO: (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation")) AND "Blender_Variables_Pers"."gWaterRecipe") AND "Blender_Variables_Pers"."gCarboStillRecipe"
"gStillWaterByPassEn" := (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation")) AND "Blender_Variables_Pers"."gWaterRecipe") AND "Blender_Variables_Pers"."gCarboStillRecipe";
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation")
// RLO: ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation"))) AND "Blender_Variables_Pers"."gWaterRecipe"
// RLO: (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation"))) AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe")
"gStillWaterByPassEn" := (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation"))) AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe");
// Network 13: Still Water Bypass
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem"
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass"
// RLO: ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass") AND "Blender_Variables_Pers"."gWaterRecipe"
// RLO: (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass") AND "Blender_Variables_Pers"."gWaterRecipe") AND "Blender_Variables_Pers"."gCarboStillRecipe"
"gBlendFiStillWaterByPass" := (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass") AND "Blender_Variables_Pers"."gWaterRecipe") AND "Blender_Variables_Pers"."gCarboStillRecipe";
// RLO: (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass") AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe")
"gBlendFiStillWaterByPass" := (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass") AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe");
// Network 14: Manual Syrup Drain Valve Open - Operator Alarm
// RLO: "gSyrupRoomEn"
// RLO: "gSyrupRoomEn" AND "gIN_HVP301_Aux"
// RLO: ("gSyrupRoomEn" AND "gIN_HVP301_Aux") AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled"
// RLO: (("gSyrupRoomEn" AND "gIN_HVP301_Aux") AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done"
// RLO: ((("gSyrupRoomEn" AND "gIN_HVP301_Aux") AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND "Procedure_Variables"."Syr_RunOut"."Done"
// RLO: "gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")
// RLO: ("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled")
// RLO: ("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done"
// RLO: (("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND (NOT "Procedure_Variables"."Syr_RunOut"."Done")
// RLO: "gBlenderCIPMode"
// RLO: "gBlenderCIPMode" AND "gIN_CIP_CIPRunning"
// RLO: ("gBlenderCIPMode" AND "gIN_CIP_CIPRunning") AND "Procedure_Variables"."Blender_Run"."Running"
"gHVP301_Open" := (((("gSyrupRoomEn" AND "gIN_HVP301_Aux") AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND "Procedure_Variables"."Syr_RunOut"."Done") OR (("gBlenderCIPMode" AND "gIN_CIP_CIPRunning") AND "Procedure_Variables"."Blender_Run"."Running");
"gHVP301_Open" := (("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND (NOT "Procedure_Variables"."Syr_RunOut"."Done") OR (("gBlenderCIPMode" AND "gIN_CIP_CIPRunning") AND "Procedure_Variables"."Blender_Run"."Running");
// Network 15: Manual Syrup Drain Valve Open - Operator Alarm
@ -120,7 +120,6 @@ BEGIN
// Network 16: Maselli Control
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BrixMeter"
// Cond: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 6
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 6 THEN
Maselli_PA_Control();
END_IF;
@ -128,7 +127,6 @@ BEGIN
// Network 17: mPDS Control
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BrixMeter"
// Cond: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 5
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 5 THEN
mPDS_PA_Control();
END_IF;
@ -146,7 +144,6 @@ BEGIN
// NOP 0
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BrixMeter"
// Cond: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 3
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 3 THEN
GetProdBrixCO2_Anal_Inpt();
END_IF;
@ -157,7 +154,7 @@ BEGIN
// Network 21: Input Data
// ERROR: Call a bloque no soportado: Input
// ERROR: FB Call Input sin instancia
// Network 22: Sel Brix Source Check
@ -177,32 +174,32 @@ BEGIN
// Network 25: Production ONS
// RLO: "gBlenderProdMode"
// PBox 26 - Passing bit: "M19001"
// RLO: "M19001" AND "mDelayPowerOnTmr"
"gProductionONS" := "M19001" AND "mDelayPowerOnTmr";
// // PBox 26 - Passing memory bit: "M19001"
// RLO: "M19001" AND (NOT "mDelayPowerOnTmr")
"gProductionONS" := "M19001" AND (NOT "mDelayPowerOnTmr");
// Network 26: Blender Prod Mode Init
// RLO: "gProductionONS"
// RLO: "Procedure_Variables"."Blender_Rinse"."ONS_Done"
// RLO: ("gProductionONS" OR "Procedure_Variables"."Blender_Rinse"."ONS_Done") AND "Blender_Variables_Pers"."gBlenderStarted"
IF ("gProductionONS" OR "Procedure_Variables"."Blender_Rinse"."ONS_Done") AND "Blender_Variables_Pers"."gBlenderStarted" THEN
// RLO: ("gProductionONS" OR "Procedure_Variables"."Blender_Rinse"."ONS_Done") AND (NOT "Blender_Variables_Pers"."gBlenderStarted")
IF ("gProductionONS" OR "Procedure_Variables"."Blender_Rinse"."ONS_Done") AND (NOT "Blender_Variables_Pers"."gBlenderStarted") THEN
BlenderCtrl_ProdModeInit();
END_IF;
// Network 27: Rinse ONS
// RLO: "HMI_Variables_Status"."System"."Blender_Prod_CIP"
// PBox 26 - Passing bit: "M19002"
// RLO: "M19002" AND "mDelayPowerOnTmr"
"gRinseONS" := "M19002" AND "mDelayPowerOnTmr";
// // PBox 26 - Passing memory bit: "M19002"
// RLO: "M19002" AND (NOT "mDelayPowerOnTmr")
"gRinseONS" := "M19002" AND (NOT "mDelayPowerOnTmr");
// Network 28: CIP ONS
// RLO: "gBlenderCIPMode"
// PBox 26 - Passing bit: "M19003"
// RLO: "M19003" AND "mDelayPowerOnTmr"
"gCIPONS" := "M19003" AND "mDelayPowerOnTmr";
// // PBox 26 - Passing memory bit: "M19003"
// RLO: "M19003" AND (NOT "mDelayPowerOnTmr")
"gCIPONS" := "M19003" AND (NOT "mDelayPowerOnTmr");
// Network 29: CIp Mode Init
@ -221,7 +218,7 @@ BEGIN
// Network 32: Tank Pressure Control
Prod Tank PressCtrl();
Prod_Tank_PressCtrl();
// Network 33: Balaiage
@ -229,7 +226,7 @@ BEGIN
// Network 34: First Production
// ERROR: Call a bloque no soportado: ProcedureFirstProduction
// ERROR: FB Call ProcedureFirstProduction sin instancia
// Network 35: CIP MAIN Calling
@ -257,14 +254,12 @@ BEGIN
// Network 41: Blend Procedure Data
// RLO: "mDelayPowerOnTmr"
IF "mDelayPowerOnTmr" THEN
// ERROR: Call a bloque no soportado: Procedure
END_IF;
// RLO: (NOT "mDelayPowerOnTmr")
// ERROR: FB Call Procedure sin instancia
// Network 42: Pneumatic Valve Control
Pneumatic Valve Ctrl();
Pneumatic_Valve_Ctrl();
// Network 43: Pumps Control
@ -343,18 +338,18 @@ BEGIN
// Network 60: Blender Ctrl Command
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Simulation"
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Simulation" THEN
BlenderCtrl_MFM Command();
// RLO: (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Simulation")
IF (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Simulation") THEN
BlenderCtrl_MFM_Command();
END_IF;
// Network 61: DP Global Diag
CPU_DP Global Diag();
CPU_DP_Global_Diag();
// Network 62: Profibus
Profibus Network();
Profibus_Network();
// Network 63: Valve Fault
@ -372,8 +367,8 @@ BEGIN
// Network 66: Mod Copy Recipe
// RLO: "HMI_Variables_Cmd"."Recipe"."Main_Page"
// RLO: "HMI_Variables_Cmd"."Recipe"."Main_Page" AND "mFP_Recip_Main_Page"
"mAux_FP_M700_1" := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND "mFP_Recip_Main_Page";
// RLO: "HMI_Variables_Cmd"."Recipe"."Main_Page" AND (NOT "mFP_Recip_Main_Page")
"mAux_FP_M700_1" := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND (NOT "mFP_Recip_Main_Page");
// RLO: "HMI_Variables_Cmd"."Recipe"."Main_Page"
// RLO: "HMI_Variables_Cmd"."Recipe"."Main_Page" AND "HMI_Variables_Cmd"."Recipe"."Edit"
// RLO: "mAux_FP_M700_1"
@ -381,9 +376,7 @@ BEGIN
// Network 67: to HMI - Recipe Management
// RLO: "AUX TRUE"
IF "AUX TRUE" THEN
// ERROR: Call a bloque no soportado: RecipeManagement - Prod
END_IF;
// ERROR: FB Call RecipeManagement___Prod sin instancia
// Network 68: Recipe Calculation

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,120 +0,0 @@
// Block Name (Original): BlenderRun_ProdTime
// Block Number: 2040
// Original Language: LAD
FUNCTION_BLOCK "BlenderRun_ProdTime"
{ S7_Optimized_Access := 'TRUE' }
VERSION : 0.1
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR_IN_OUT
END_VAR
VAR_TEMP
m1MinONS : Bool;
m1HourONS : Bool;
Buffer : Bool;
mRunMin : Bool;
mRunHr : Bool;
I_DIRunning_sec : DInt;
I_DIRunning_min : DInt;
MOD60 : DInt;
END_VAR
BEGIN
// Network 1: Seconds
IF "Procedure_Variables"."Blender_Run"."Running" AND "CLK_1.0S" THEN
"Blender_Variables_Pers"."gSLIM_Sec" := "Blender_Variables_Pers"."gSLIM_Sec" + 1;
END_IF;
// Network 2: Reset Hours
IF "SLIM_Variables"."ResetHour" THEN
"Blender_Variables_Pers"."gSLIM_Sec" := 0;
END_IF;
// Network 3: Seconds Counter
IF "gBlenderBlending" AND "CLK_1.0S" THEN
"Blender_Variables_Pers"."gProdSec" := "Blender_Variables_Pers"."gProdSec" + 1;
END_IF;
// Network 4: Minute
"m1MinONS" := "Blender_Variables_Pers"."gProdSec" = 60;
// Network 5: Minute Counter
IF "m1MinONS" THEN
"Blender_Variables_Pers"."gProdSec" := 0;
"Blender_Variables_Pers"."gProdMin" := "Blender_Variables_Pers"."gProdMin" + 1;
END_IF;
// Logic included in grouped IF (by UID 27)
// Logic included in grouped IF (by UID 27)
// Network 6: Hour
"m1HourONS" := "Blender_Variables_Pers"."gProdMin" = 60;
// Network 7: Hour Counter
IF "m1HourONS" THEN
"Blender_Variables_Pers"."gProdMin" := 0;
"Blender_Variables_Pers"."gProdHour" := "Blender_Variables_Pers"."gProdHour" + 1;
"Blender_Variables_Pers"."gBlendingMaintHour" := "Blender_Variables_Pers"."gBlendingMaintHour" + 1;
END_IF;
// Logic included in grouped IF (by UID 30)
// Logic included in grouped IF (by UID 30)
// Logic included in grouped IF (by UID 30)
// Network 8: Counter reset
IF "gBlenderCIPMode" OR "gBlenderRinseMode" THEN
"Blender_Variables_Pers"."gProdSec" := 0;
"Blender_Variables_Pers"."gProdMin" := 0;
"Blender_Variables_Pers"."gProdHour" := 0;
END_IF;
// Logic included in grouped IF (by UID 31)
// Logic included in grouped IF (by UID 31)
// Logic included in grouped IF (by UID 31)
// Network 9: Running Seconds
IF "Procedure_Variables"."Blender_Run"."Running" AND "CLK_1.0S" THEN
"Blender_Variables_Pers"."gRunningSeconds" := "Blender_Variables_Pers"."gRunningSeconds" + 1;
END_IF;
// Network 10: Running Minutes
"I_DIRunning_sec" := "Blender_Variables_Pers"."gRunningSeconds";
"MOD60" := "I_DIRunning_sec" MOD DINT#60;
IF ("MOD60" = DINT#0 AND "Procedure_Variables"."Blender_Run"."Running") AND "CLK_1.0S" THEN
"Blender_Variables_Pers"."gRunningMinutes" := "Blender_Variables_Pers"."gRunningMinutes" + 1;
END_IF;
"M19012" := (("MOD60" = DINT#0 AND "Procedure_Variables"."Blender_Run"."Running") AND "CLK_1.0S"); // Update edge memory bit
"mRunMin" := (("MOD60" = DINT#0 AND "Procedure_Variables"."Blender_Run"."Running") AND "CLK_1.0S") AND NOT "M19012";
// Network 11: Running Hours for Maintenance
IF "mRunMin" THEN
"I_DIRunning_min" := "Blender_Variables_Pers"."gRunningMinutes";
END_IF;
IF "mRunMin" THEN
"MOD60" := "I_DIRunning_min" MOD DINT#60;
END_IF;
IF "MOD60" = DINT#0 THEN
"Blender_Variables_Pers"."gRunningMaintHour" := "Blender_Variables_Pers"."gRunningMaintHour" + 1;
END_IF;
// Network 12: Running Hours for Maintenance
"HMI_Variables_Status"."System"."BlendingMaintHour" := "Blender_Variables_Pers"."gRunningMaintHour";
END_FUNCTION_BLOCK

View File

@ -1,33 +0,0 @@
// Block Name (Original): TestLAD
// Block Number: 2
// Original Language: LAD
FUNCTION_BLOCK "TestLAD"
{ S7_Optimized_Access := 'TRUE' }
VERSION : 0.1
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR_IN_OUT
END_VAR
VAR_TEMP
END_VAR
BEGIN
// Network 1: Clock Bit
"Clock_5Hz" := "Clock_10Hz";
// Network 2: Clock Bit
"Clock_5Hz" := "Clock_10Hz";
// Network 3:
END_FUNCTION_BLOCK

View File

@ -0,0 +1,170 @@
# LAD-to-SCL Conversion Pipeline: Documentación de Referencia
## 1. Visión General
Este documento describe un pipeline de scripts de Python diseñado para convertir bloques de función o funciones (FC/FB) escritos en Ladder Logic (LAD) desde archivos XML de TIA Portal Openness a un código SCL (Structured Control Language) semánticamente equivalente.
El proceso se divide en tres etapas principales, cada una manejada por un script específico:
1. **XML a JSON Enriquecido (`x1_to_json.py`):** Parsea el XML de Openness, extrae la estructura lógica (incluyendo llamadas a FC/FB y temporizadores S5), conexiones explícitas e **infiere conexiones implícitas** (especialmente las habilitaciones EN) para crear un archivo JSON detallado. Mapea tipos de instrucción LAD/FBD (p.ej., `Se`, `NBox`) a nombres internos consistentes (p.ej., `TON_S5`, `N_TRIG`).
2. **Procesamiento Semántico (`x2_process.py`):** Lee el JSON enriquecido y, de forma iterativa, traduce cada instrucción (usando los tipos mapeados) a su equivalente SCL, manejando dependencias, propagando el estado lógico (RLO), traduciendo temporizadores S5 a IEC, generando lógica de flancos y agrupando lógica paralela bajo bloques `IF`. El SCL generado se almacena *dentro* del propio JSON.
3. **Generación de SCL Final (`x3_generate_scl.py`):** Lee el JSON completamente procesado y ensambla el código SCL final en un archivo `.scl` formateado, incluyendo declaraciones de variables (Input, Output, InOut, Temp, Stat - incluyendo instancias de temporizadores y bits de memoria de flancos) y el cuerpo del programa (`FUNCTION` o `FUNCTION_BLOCK`).
## 2. Etapas del Pipeline
### Etapa 1: XML a JSON Enriquecido (`x1_to_json.py`)
* **Propósito:** Transformar la compleja y a veces ambigua estructura XML de Openness en un formato JSON estructurado y más fácil de procesar, añadiendo información clave que está implícita en el LAD visual pero no siempre explícita en el XML.
* **Entrada:** Archivo `.xml` exportado desde TIA Portal Openness para un FC o FB.
* **Salida:** Archivo `_simplified.json`.
* **Proceso Clave:**
1. **Parseo XML:** Utiliza `lxml` para leer el archivo XML.
2. **Extracción de Metadatos:** Obtiene nombre del bloque, número, lenguaje original, comentario del bloque. Detecta si es `SW.Blocks.FC` o `SW.Blocks.FB`.
3. **Extracción de Interfaz:** Parsea las secciones `Input`, `Output`, `InOut`, `Temp`, `Constant`, `Return` para obtener la declaración de variables.
4. **Parseo de Redes (`CompileUnit`):** Itera sobre cada red lógica.
* **`parse_network`:**
* **Parseo de Componentes:**
* `Access`: Identifica variables globales/locales, constantes literales y tipadas (`parse_access`). Utiliza `get_symbol_name` para formatear nombres simbólicos con comillas (`"DB"."Var"`).
* `Part`: Identifica instrucciones estándar LAD/FBD (`parse_part`). **Importante:** Detecta pines negados (`<Negated>`) y los almacena en `negated_pins`. **Mapea** nombres XML (`Se`, `Sd`, `PBox`, `NBox`, `RCoil`, `SCoil`, `SdCoil`) a tipos internos (`TON_S5`, `TONR_S5`, `P_TRIG`, `N_TRIG`, `R`, `S`, `SR`).
* `Call`: Identifica llamadas a otros FCs o FBs (`parse_call`), extrayendo el nombre del bloque llamado, tipo (FC/FB) e información de instancia DB (`instance_db`) si aplica (formateado con comillas).
* Crea `access_map` y `parts_and_calls_map` para referencia rápida por UID.
* **Parseo de Conexiones (`Wire`):**
* Construye `wire_connections`: Un mapa `(dest_uid, dest_pin) -> [(src_uid, src_pin), ...]`.
* Construye `source_connections`: Un mapa `(src_uid, src_pin) -> [(dest_uid, dest_pin), ...]`.
* **Construcción Lógica Inicial:** Crea una lista de diccionarios (`all_logic_steps`), uno por cada `Part` o `Call`, rellenando `inputs` y `outputs` **solo con las conexiones explícitas** encontradas en los `Wire`.
* **Inferencia de Conexión `EN` (¡Paso Crucial!):**
* Itera sobre los bloques funcionales (`Move`, `Add`, `Call`, `BLKMOV`, etc.) que *no* tienen una entrada `en` explícita definida después del paso anterior.
* Utiliza una **heurística de búsqueda lineal hacia atrás** para encontrar la fuente de RLO más probable que precede a este bloque (la salida `out` de un bloque lógico como `Contact`/`O`/`Eq`/`P_TRIG`/`N_TRIG` o la salida `eno` de un bloque funcional anterior).
* Si se encuentra una fuente inferida, **añade la conexión `en`** al diccionario `inputs` del bloque funcional actual. Esto enriquece el JSON con la dependencia lógica implícita.
* **Ordenamiento:** Ordena las instrucciones en la lista `logic` final (generalmente por UID).
5. **Escritura JSON:** Guarda la estructura de datos completa en el archivo `_simplified.json`.
### Etapa 2: Procesamiento Semántico (`x2_process.py`)
* **Propósito:** Traducir la lógica LAD/FBD (representada en el JSON enriquecido) a código SCL embebido, resolviendo dependencias entre instrucciones, generando lógica SCL equivalente (incluyendo manejo de flancos y temporizadores), y aplicando optimizaciones de agrupación `IF`.
* **Entrada:** Archivo `_simplified.json` (generado por la Etapa 1).
* **Salida:** Archivo `_simplified_processed.json`.
* **Proceso Clave:**
1. **Carga de JSON y Preparación:** Lee el JSON de entrada y reconstruye mapas de acceso por red. Inicializa el `scl_map` global (o por red).
2. **Bucle Iterativo:** Repite los siguientes pasos hasta que no se realicen cambios en un pase completo o se alcance un límite máximo de pases (`max_passes`).
* **Fase 1: Procesadores Base:**
* Itera sobre cada instrucción en cada red.
* Si la instrucción no ha sido procesada (`_scl` o `_error`) ni agrupada (`grouped`), busca el procesador adecuado (`process_xxx`) basado en su `type` (usando los tipos mapeados como `TON_S5`, `P_TRIG`, etc.).
* **`process_xxx` (Ejecución):**
* Llama a `get_scl_representation` para obtener el SCL de sus pines de entrada, buscándolos en `scl_map` o directamente en `access_map`. `get_scl_representation` ahora **convierte constantes S5T# a T#**.
* Si alguna dependencia no está resuelta (devuelve `None`), el procesador retorna `False`.
* Si las dependencias están resueltas:
* **Generadores RLO (`Contact`, `O`, `Eq`, `P_TRIG`, `N_TRIG`):** Calculan la expresión booleana SCL resultante y la almacenan en `scl_map` bajo la clave `(network_id, instr_uid, 'out')`. `P_TRIG`/`N_TRIG` generan lógica explícita de flancos y la llamada para actualizar el bit de memoria (`stat_... := CLK;`). Guardan comentarios/lógica en `instruction['scl']`.
* **Bloques Funcionales (`Move`, `Add`, `Convert`, `Mod`, `BLKMOV`, `Call`):**
* Obtienen la condición `EN` (explícita o inferida).
* Generan el código SCL *core* (la asignación, cálculo o llamada). `process_call` ahora usa correctamente `instance_db` para FBs. `process_blkmov` traduce a `DST := SRC;` (con advertencia sobre tipos).
* Generan el SCL final, **envolviendo el core en `IF en_scl THEN ... END_IF;`** si `en_scl` no es `"TRUE"`.
* Almacenan el SCL final en `instruction['scl']`.
* Almacenan el nombre de la variable de salida/temporal (prefijado con `#` si es temporal) en `scl_map` para `out`/`out1`/`RET_VAL`.
* Almacenan el `en_scl` en `scl_map` para `eno`.
* **Bobinas (`Coil`, `R`, `S`, `SR`):** Obtienen el RLO de entrada (`in`, o `S`/`R1` para `SR`), obtienen el operando destino, generan la asignación (`:= TRUE`/`:= FALSE`) o lógica `IF/ELSIF` envuelta en `IF RLO THEN ...` si aplica, y la guardan en `instruction['scl']`.
* **Temporizadores (`TON_S5`, `TONR_S5`):** Generan una llamada a un bloque IEC (`TON`/`TONR`) usando un nombre de instancia (`stat_timer_...`). Parsean el valor `PT` (T#...). Mapean `Q` y `ET` a la instancia (`Instance.Q`, `Instance.ET`) en `scl_map`. Almacenan la llamada en `instruction['scl']`.
* Marcan la instrucción como procesada añadiendo `_scl` a `instruction['type']`.
* Retornan `True`.
* Se registra si hubo algún cambio en esta fase (`made_change_in_base_pass`).
* **Fase 2: Agrupación de IFs (`process_group_ifs`):**
* Itera sobre las instrucciones *ya procesadas* (`_scl`) que son generadoras de condición (`Contact`, `O`, `Eq`, `P_TRIG`, `N_TRIG`, etc.).
* Obtiene la `condition_scl` de `scl_map`.
* Busca todos los bloques funcionales, bobinas o temporizadores (`Move_scl`, `Add_scl`, `Coil_scl`, `TON_S5_scl`, etc.) cuyo pin de habilitación (`en`, `in`, `s`) esté conectado a la salida `out` de esta instrucción generadora.
* Si encuentra **más de uno**:
* Extrae el código *core* (lo que está dentro del `IF...END_IF;` si existe, o el código completo si no) de cada consumidor.
* Construye un **único bloque `IF condition_scl THEN ... END_IF;`** que contiene todos los cores extraídos, indentados.
* **Sobrescribe** el campo `scl` de la instrucción *generadora de condición* con este nuevo bloque `IF` agrupado.
* Marca cada instrucción consumidora con `grouped = True` y cambia su `scl` a un comentario (`GROUPED_COMMENT`) para evitar que `x3_generate_scl.py` lo use.
* Se registra si hubo algún cambio en esta fase (`made_change_in_group_pass`).
* **Condición de Salida:** El bucle termina si `made_change_in_base_pass` y `made_change_in_group_pass` son ambos `False`.
3. **Verificación Final:** Comprueba si quedaron instrucciones sin procesar, sin agrupar y sin errores, e informa al usuario.
4. **Escritura JSON:** Guarda el JSON modificado (con SCL embebido y marcas de agrupación) en el archivo `_simplified_processed.json`.
### Etapa 3: Generación de SCL Final (`x3_generate_scl.py`)
* **Propósito:** Ensamblar un archivo `.scl` completo y formateado a partir del JSON procesado.
* **Entrada:** Archivo `_simplified_processed.json` (generado por la Etapa 2).
* **Salida:** Archivo `.scl`.
* **Proceso Clave:**
1. **Carga de JSON:** Lee el archivo JSON procesado.
2. **Detección de Variables y Tipo de Bloque:**
* Escanea el SCL generado en busca de variables `#_temp_...` y `stat_...`.
* Identifica los tipos de las variables `stat_...` (Bool, TON, TONR) según sus nombres (`stat_nbox_mem...`, `stat_timer_Se...`, etc.).
* Determina si el bloque debe ser `FUNCTION_BLOCK` (si hay variables `STAT` o `TEMP`) o `FUNCTION`.
3. **Generación de Cabecera:** Escribe el encabezado del bloque (`FUNCTION_BLOCK name` o `FUNCTION name`, `VERSION`, etc.). Utiliza `format_variable_name` (la versión corregida) para el nombre del bloque.
4. **Generación de Declaraciones VAR:**
* Escribe las secciones `VAR_INPUT`, `VAR_OUTPUT`, `VAR_IN_OUT` usando `format_variable_name` para los nombres de las variables de la interfaz.
* **Escribe `VAR_STAT`:** Declara las variables `stat_...` detectadas con sus tipos inferidos (Bool, TON, TONR) y nombres entre comillas.
* **Escribe `VAR_TEMP`:** Declara las variables `#_temp_...` detectadas (declaradas como `"_temp_..."` sin el `#` pero con comillas) y las variables de la sección `Temp` de la interfaz. Utiliza inferencia de tipo básica para las variables `#_temp_...`.
5. **Generación del Cuerpo (`BEGIN`/`END_FUNCTION_BLOCK` o `END_FUNCTION`):**
* Itera sobre las `networks` en el JSON.
* Añade comentarios de red.
* Itera sobre la `logic` de cada red.
* Para cada `instruction`:
* **Verifica el flag `grouped`:** Si `instruction.get('grouped', False)` es `True`, **ignora** esta instrucción.
* Si no está agrupada, obtiene el valor del campo `scl`.
* **Limpia comentarios internos:** Elimina comentarios informativos específicos (`// RLO:`, `// Comparison:`, `// Logic O:`, `// N/P_TRIG Output Logic:`) si son la única parte de la línea, pero conserva los comentarios de actualización de memoria de flancos, errores y agrupación.
* Indenta y añade las líneas del SCL resultante al output.
* Añade líneas en blanco entre redes si contienen código.
6. **Escritura de Archivo:** Escribe el string SCL completo al archivo `.scl`.
## 3. Cómo Extender para Nuevas Instrucciones LAD/FBD
Añadir soporte para un nuevo tipo de instrucción (p.ej., un comparador `GT`, una función matemática `SQRT`, o un temporizador IEC `TP`) requiere modificar los scripts `x1_to_json.py` y `x2_process.py`.
**Pasos:**
1. **Analizar el XML:** Exporta un bloque simple que use la nueva instrucción y examina el XML de Openness. Identifica:
* Si se representa como `<Part Name="NombreInstruccion">` o `<Call Name="NombreInstruccion">`.
* Sus pines de entrada y salida (`NameCon`/`IdentCon` en los `Wire`).
* Cualquier atributo o `TemplateValue` relevante.
* Si tiene pines negados (`<Negated>`).
2. **Modificar `x1_to_json.py` (`parse_part` o `parse_call` y `parse_network`):**
* **Parseo:** Asegúrate de que `parse_part` o `parse_call` capture correctamente la nueva instrucción.
* **Mapeo de Tipo:** Si el nombre XML no es ideal (como `Se`), mapéalo a un nombre interno consistente en `parse_part` (p.ej., si fuera un temporizador IEC TP, podrías mapear `TPartName` -> `TP_IEC`).
* **Clasificación:** Decide si la nueva instrucción es un `functional_block_type` (necesita inferencia EN?) o un `rlo_generator`. Actualiza estas listas en `parse_network` si es necesario.
* **Inferencia EN:** Revisa si la lógica de inferencia EN en `parse_network` necesita ajustes.
* **Pines:** Asegúrate de que sus pines de entrada/salida esperados estén en `possible_input_pins` / `possible_output_pins` en `parse_network`.
3. **Modificar `x2_process.py` (continuación):**
* **Lógica SCL (continuación):**
* ...
* Almacena el SCL final en `instruction['scl']`.
* Actualiza `instruction['type']` con el sufijo `_scl`.
* **Actualiza `scl_map`:** Añade entradas para los pines de salida (`out`, `Q`, etc.) con su representación SCL (puede ser un nombre de variable temporal prefijado con `#`, el resultado de una expresión, o el acceso a un miembro de instancia como `"Instance".Q`). Añade la entrada para `eno` si el bloque lo tiene (generalmente `scl_map[key_eno] = en_scl`).
* Retorna `True`.
* **Añadir a la Lista:** Inserta la nueva función `process_nombre_instruccion` en la lista `base_processors_list` en el orden de prioridad correcto (generalmente, generadores de valores/condiciones antes que consumidores, y las llamadas (`process_call`) al final o cerca del final). Actualiza el `processor_map` si es necesario (especialmente si manejas tipos como `Call_FC`, `Call_FB`).
* **Agrupación:** Considera si este nuevo bloque debería ser parte de la lógica de agrupación (¿es un bloque funcional, bobina o temporizador que puede ser habilitado en paralelo?). Si es así, añádelo a la lista `groupable_types_original` en `process_group_ifs`. El código de agrupación existente debería funcionar si el procesador del nuevo bloque genera correctamente la estructura `IF EN THEN ... END_IF;` (o código simple si EN=TRUE).
4. **Modificar `x3_generate_scl.py`:**
* **Declaraciones STAT:** Si la nueva instrucción introduce la necesidad de un nuevo tipo de variable estática (p.ej., un tipo de datos específico para un contador, o un nuevo tipo de instancia de FB IEC), necesitarás:
* Añadir una nueva expresión regular (`stat_pattern_xxx`) para detectar el nombre de la instancia/variable estática generada por tu nuevo procesador en `x2_process.py`.
* Actualizar el bucle de detección para que use esta nueva regex y almacene el nombre y el tipo SCL correcto (`MyCounterType`, `IEC_Counter`, etc.) en el diccionario `stat_vars`.
* La lógica existente en `generate_scl` que escribe la sección `VAR_STAT` usará esta información para declarar la variable correctamente.
* **Declaraciones TEMP:** Si la nueva instrucción genera variables temporales con un patrón específico o requiere un tipo de dato específico que pueda ser inferido, puedes mejorar la lógica de inferencia de tipo en la sección `VAR_TEMP`.
* **Limpieza de Comentarios:** Si el nuevo procesador genera comentarios internos específicos que no quieres en el SCL final, ajusta la lógica de filtrado en la sección de generación del cuerpo del bloque.
5. **Probar:**
* Crea un archivo XML de prueba simple que use la nueva instrucción en diferentes contextos (con entradas/salidas conectadas, con EN explícito/implícito, negaciones si aplica).
* Ejecuta el pipeline completo (`x1_to_json.py`, `x2_process.py`, `x3_generate_scl.py`).
* **Verifica `_simplified.json`:** Asegúrate de que `x1` parseó correctamente la instrucción, mapeó su tipo, identificó sus conexiones y realizó la inferencia EN si era necesario.
* **Verifica `_simplified_processed.json`:** Comprueba que `x2` ejecutó tu nuevo procesador, generó el SCL esperado en el campo `scl`, marcó el tipo con `_scl`, y actualizó el `scl_map` correctamente para sus salidas. Verifica si la agrupación `IF` funcionó como se esperaba si la instrucción era parte de lógica paralela.
* **Verifica el archivo `.scl`:** Confirma que `x3` generó el SCL final correctamente, incluyendo las declaraciones necesarias (STAT/TEMP) y el código SCL de la instrucción (indentado y sin comentarios no deseados). Asegúrate de que no haya errores de sintaxis SCL obvios.
* **Importar en TIA Portal (Opcional pero Recomendado):** Intenta importar el archivo SCL generado en un proyecto de TIA Portal para validar la sintaxis y la estructura del bloque.
## 4. Futuras Mejoras y Consideraciones
* **Manejo de Tipos de Datos:** Implementar un seguimiento y conversión de tipos más robusto. Inferir tipos para variables temporales de forma más precisa. Usar funciones de conversión SCL explícitas (`INT_TO_DINT`, etc.) donde sea necesario, posiblemente requiriendo información de tipo adicional en el JSON.
* **Lógica de Flancos/Temporizadores:** Asegurar que la traducción de temporizadores S5 y la lógica de flancos generada sea completamente compatible con los bloques IEC estándar (`TON`, `TOF`, `TP`, `TONR`, `R_TRIG`, `F_TRIG`). Considerar la necesidad de declarar instancias de `R_TRIG`/`F_TRIG` en `VAR_STAT` en lugar de generar lógica explícita.
* **Soporte para FBs:** Mejorar el manejo de parámetros InOut y Return para llamadas a FC/FB. Potencialmente, requerir información de la interfaz del bloque llamado (parseando su propio XML o desde una biblioteca) para generar llamadas SCL más precisas.
* **Optimización SCL:** Explorar más optimizaciones SCL más allá de la agrupación de IFs (p.ej., simplificación de expresiones booleanas complejas, propagación de constantes).
* **Estructuras LAD Complejas:** La inferencia de EN actual (búsqueda lineal hacia atrás) es simple. Para manejar bifurcaciones (`Branch`), uniones (`Merge`) y saltos (`JMP`) complejos de forma robusta, `x1_to_json.py` necesitaría realizar un análisis de flujo de datos/control más sofisticado para determinar las dependencias lógicas correctas antes de generar el JSON.
* **Manejo de Errores:** Mejorar el reporte de errores con más contexto (nombre de red, UID, tipo de instrucción). Añadir más validaciones en cada etapa.
* **Interfaz Gráfica/Configuración:** Crear una interfaz más amigable o archivos de configuración para gestionar el proceso, seleccionar archivos y configurar opciones (p.ej., idioma por defecto, nivel de log).
* **Soporte para otros lenguajes (FBD/STL):** Extender el parser `x1_to_json.py` y los procesadores en `x2_process.py` para manejar otros lenguajes de origen, lo cual requeriría entender sus respectivas representaciones XML en Openness.
## 5. Conclusión
Este pipeline proporciona una base funcional para la conversión automática de LAD a SCL desde archivos TIA Portal Openness XML. La clave de su funcionamiento es la **separación de responsabilidades**: `x1` enriquece el modelo de datos con información implícita, `x2` realiza la traducción semántica iterativa y la optimización de agrupación, y `x3` ensambla el archivo SCL final. Al añadir procesadores específicos para cada tipo de instrucción LAD/FBD y refinar la lógica de inferencia y generación, la cobertura y calidad de la conversión pueden ser extendidas significativamente. La estructura modular facilita la incorporación de soporte para nuevas instrucciones y futuras mejoras.

View File

@ -0,0 +1,687 @@
# -*- coding: utf-8 -*-
import json
import os
from lxml import etree
import traceback
from collections import defaultdict
# --- Namespaces ---
ns = {
"iface": "http://www.siemens.com/automation/Openness/SW/Interface/v5",
"flg": "http://www.siemens.com/automation/Openness/SW/NetworkSource/FlgNet/v4",
}
# --- Helper Functions ---
# get_multilingual_text, get_symbol_name, parse_access - No changes needed from previous corrected version
def get_multilingual_text(element, default_lang="en-US", fallback_lang="it-IT"):
if element is None:
return ""
try:
# Try default language first
xpath_expr_default = (
f".//iface:MultilingualTextItem[iface:Culture='{default_lang}']/iface:Text"
)
text_items = element.xpath(xpath_expr_default, namespaces=ns)
if text_items and text_items[0].text is not None:
return text_items[0].text.strip()
# Try fallback language
xpath_expr_fallback = (
f".//iface:MultilingualTextItem[iface:Culture='{fallback_lang}']/iface:Text"
)
text_items = element.xpath(xpath_expr_fallback, namespaces=ns)
if text_items and text_items[0].text is not None:
return text_items[0].text.strip()
# Try any language if specific ones fail
xpath_expr_any = ".//iface:MultilingualTextItem/iface:Text"
text_items = element.xpath(xpath_expr_any, namespaces=ns)
if text_items and text_items[0].text is not None:
return text_items[0].text.strip()
return "" # No text found
except Exception as e:
# print(f"Advertencia: Error extrayendo MultilingualText: {e}") # Reduced verbosity
return ""
def get_symbol_name(symbol_element):
"""Extracts the full symbolic name, adding quotes around each component."""
if symbol_element is None:
return None
try:
# Namespace might be missing on Component, use local-name()
components = symbol_element.xpath("./*[local-name()='Component']/@Name")
# Ensure quotes are added correctly
return ".".join(f'"{c}"' for c in components) if components else None
except Exception as e:
print(f"Advertencia: Excepción en get_symbol_name: {e}")
return None
def parse_access(access_element):
"""Parses Access elements (variables, constants)."""
if access_element is None:
return None
uid = access_element.get("UId")
scope = access_element.get(
"Scope"
) # GlobalVariable, LocalVariable, LiteralConstant, TypedConstant etc.
info = {"uid": uid, "scope": scope, "type": "unknown_access"} # Default type
symbol = access_element.xpath("./*[local-name()='Symbol']")
constant = access_element.xpath("./*[local-name()='Constant']")
# Add check for ConstantValue tag directly under Access (sometimes happens for literals)
const_val_direct = access_element.xpath("./*[local-name()='ConstantValue']/text()")
if symbol:
info["type"] = "variable"
info["name"] = get_symbol_name(symbol[0])
if info["name"] is None:
info["type"] = "error_parsing_symbol"
print(f"Error: No se pudo parsear nombre símbolo Access UID={uid}")
elif constant:
info["type"] = "constant"
const_type_elem = constant[0].xpath("./*[local-name()='ConstantType']")
const_val_elem = constant[0].xpath("./*[local-name()='ConstantValue']")
info["datatype"] = (
const_type_elem[0].text.strip()
if const_type_elem and const_type_elem[0].text
else "Unknown"
)
info["value"] = (
const_val_elem[0].text.strip()
if const_val_elem and const_val_elem[0].text
else None
)
if info["value"] is None:
info["type"] = "error_parsing_constant"
print(f"Error: Constante sin valor Access UID={uid}")
# Handle S5Time specifically - store its original format
elif info["datatype"] == "Unknown" and scope == "TypedConstant":
if info["value"].upper().startswith("S5T#"):
info["datatype"] = "S5Time" # Mark as S5Time, value remains S5T#...
# Add other typed constant checks if necessary (e.g., C#, P#)
elif const_val_direct and scope == "LiteralConstant":
info["type"] = "constant"
info["value"] = const_val_direct[0].strip()
# Infer datatype for literals
val_lower = info["value"].lower()
if val_lower in ["true", "false"]:
info["datatype"] = "Bool"
elif info["value"].isdigit() or (
info["value"].startswith("-") and info["value"][1:].isdigit()
):
info["datatype"] = "Int" # Could be DInt etc, Int is safe default
elif "." in info["value"] or "e" in val_lower:
try:
float(info["value"])
info["datatype"] = "Real" # Could be LReal
except ValueError:
info["datatype"] = "String" # If float conversion fails
else:
info["datatype"] = "String" # Default literal type
# If still unknown, log warning
if info["type"] == "unknown_access":
# Don't warn for Constant scope as it might be handled later
if scope != "Constant":
print(
f"Advertencia: Access UID={uid} scope={scope} no es Symbol ni Constant reconocible."
)
# Ensure variable has a name
if info["type"] == "variable" and not info.get("name"):
print(f"Error Interno: parse_access var sin nombre UID {uid}.")
info["type"] = "error_no_name"
return info
def parse_part(part_element):
"""Parses Part elements (standard instructions), extracting UID, name, template values, and negated pins."""
if part_element is None:
return None
uid = part_element.get("UId")
name_orig = part_element.get("Name") # Instruction type (e.g., Contact, Coil, Move)
if not uid or not name_orig:
print(
f"Error: Part sin UID o Name: {etree.tostring(part_element, encoding='unicode')}"
)
return None
template_values = {}
try:
for tv in part_element.xpath("./*[local-name()='TemplateValue']"):
tv_name = tv.get("Name")
tv_type = tv.get("Type")
if tv_name and tv_type:
template_values[tv_name] = tv_type
except Exception as e:
print(f"Advertencia: Error extrayendo TemplateValues Part UID={uid}: {e}")
negated_pins = {}
try:
for negated_elem in part_element.xpath("./*[local-name()='Negated']"):
negated_pin_name = negated_elem.get("Name")
if negated_pin_name:
negated_pins[negated_pin_name] = True
except Exception as e:
print(f"Advertencia: Error extrayendo Negated Pins Part UID={uid}: {e}")
version = part_element.get("Version")
# Map XML names to internal types used by x2_process
name_mapped = name_orig
if name_orig == "Se":
name_mapped = "TON_S5"
elif name_orig == "Sd":
name_mapped = "TONR_S5"
elif name_orig == "PBox":
name_mapped = "P_TRIG"
elif name_orig == "NBox":
name_mapped = "N_TRIG"
elif name_orig == "RCoil":
name_mapped = "R"
elif name_orig == "SCoil":
name_mapped = "S"
elif name_orig == "SdCoil":
name_mapped = "SR" # Map S5 Set-Dominant to SR internal type
elif name_orig == "BLKMOV":
name_mapped = "BLKMOV" # Keep as is
# Add other mappings if necessary (e.g., RsCoil -> RS)
part_data = {
"uid": uid,
"type": name_mapped, # Use the mapped type
"original_type": name_orig, # Store original name for reference if needed
"template_values": template_values,
"negated_pins": negated_pins,
}
if version:
part_data["version"] = version
return part_data
# parse_call - No changes needed from previous corrected version
def parse_call(call_element):
"""Parses Call elements (FC/FB calls)."""
if call_element is None:
return None
uid = call_element.get("UId")
if not uid:
print(
f"Error: Call encontrado sin UID: {etree.tostring(call_element, encoding='unicode')}"
)
return None
# Use local-name() for CallInfo
call_info_elem = call_element.xpath("./*[local-name()='CallInfo']")
if not call_info_elem:
print(f"Error: Call UID {uid} sin elemento CallInfo.")
return None
call_info = call_info_elem[0]
block_name = call_info.get("Name")
block_type = call_info.get("BlockType") # FC, FB
if not block_name or not block_type:
print(f"Error: CallInfo para UID {uid} sin Name o BlockType.")
return None
call_data = {
"uid": uid,
"type": "Call", # Generic type for our JSON
"block_name": block_name,
"block_type": block_type,
"template_values": {}, # Add fields for consistency with parse_part
"negated_pins": {},
}
# Instance info for FBs
instance_name = None
if block_type == "FB":
# Use local-name() for Instance and Symbol
instance_elem = call_info.xpath("./*[local-name()='Instance']")
if instance_elem:
symbol_elem = instance_elem[0].xpath("./*[local-name()='Symbol']")
if symbol_elem:
instance_name = get_symbol_name(symbol_elem[0])
if instance_name:
call_data["instance_db"] = (
instance_name # Store the formatted name directly
)
return call_data
# --- Function parse_network (Main logic per network) ---
def parse_network(network_element):
if network_element is None:
return {
"id": "ERROR",
"title": "Invalid Network Element",
"logic": [],
"error": "Input element was None",
}
network_id = network_element.get("ID")
title_node = network_element.xpath(
".//*[local-name()='MultilingualText'][@CompositionName='Title']"
)
network_title = (
get_multilingual_text(title_node[0]) if title_node else f"Network {network_id}"
)
comment_node = network_element.xpath(
".//*[local-name()='MultilingualText'][@CompositionName='Comment']"
)
network_comment = get_multilingual_text(comment_node[0]) if comment_node else ""
flgnet_list = network_element.xpath(".//flg:FlgNet", namespaces=ns)
if not flgnet_list:
return {
"id": network_id,
"title": network_title,
"comment": network_comment,
"logic": [],
"error": "FlgNet not found",
}
flgnet = flgnet_list[0]
# 1. Parse Access, Parts, and Calls
access_map = {}
for acc in flgnet.xpath(".//flg:Access", namespaces=ns):
if acc_info := parse_access(acc):
access_map[acc_info["uid"]] = acc_info
parts_and_calls_map = {}
instruction_elements = flgnet.xpath(".//flg:Part | .//flg:Call", namespaces=ns)
for element in instruction_elements:
parsed_info = None
if element.tag == etree.QName(ns["flg"], "Part"):
parsed_info = parse_part(element)
elif element.tag == etree.QName(ns["flg"], "Call"):
parsed_info = parse_call(element)
if parsed_info and "uid" in parsed_info:
parts_and_calls_map[parsed_info["uid"]] = parsed_info
# 2. Parse Wires
wire_connections = defaultdict(list)
source_connections = defaultdict(list)
flg_ns_uri = ns["flg"]
for wire in flgnet.xpath(".//flg:Wire", namespaces=ns):
source_uid, source_pin, dest_uid, dest_pin = None, None, None, None
source_elem = wire.xpath("./*[1]")[0]
dest_elem = wire.xpath("./*[2]")[0]
if source_elem.tag == etree.QName(flg_ns_uri, "Powerrail"):
source_uid, source_pin = "POWERRAIL", "out"
elif source_elem.tag == etree.QName(flg_ns_uri, "IdentCon"):
source_uid, source_pin = source_elem.get("UId"), "value"
elif source_elem.tag == etree.QName(flg_ns_uri, "NameCon"):
source_uid, source_pin = source_elem.get("UId"), source_elem.get("Name")
if dest_elem.tag == etree.QName(flg_ns_uri, "IdentCon"):
dest_uid, dest_pin = dest_elem.get("UId"), "value"
elif dest_elem.tag == etree.QName(flg_ns_uri, "NameCon"):
dest_uid, dest_pin = dest_elem.get("UId"), dest_elem.get("Name")
elif dest_elem.tag == etree.QName(flg_ns_uri, "OpenCon"):
dest_uid, dest_pin = "OPEN", "in"
if dest_uid and dest_pin and source_uid is not None and source_pin is not None:
if dest_uid != "OPEN":
dest_key = (dest_uid, dest_pin)
source_info = (source_uid, source_pin)
if source_info not in wire_connections[dest_key]:
wire_connections[dest_key].append(source_info)
source_key = (source_uid, source_pin)
dest_info = (dest_uid, dest_pin)
if dest_info not in source_connections[source_key]:
source_connections[source_key].append(dest_info)
# 3. Build Initial Logic Representation
all_logic_steps = {}
for instr_uid, instr_info in parts_and_calls_map.items():
instruction_repr = {
"instruction_uid": instr_uid,
**instr_info,
"inputs": {},
"outputs": {},
}
# *** ADD DSTBLK to possible inputs ***
possible_input_pins = {
"en",
"in",
"in1",
"in2",
"in3",
"in4",
"operand",
"bit",
"pre",
"clk",
"s",
"tv",
"r",
"S",
"R1",
"SRCBLK",
"DSTBLK",
}
for dest_pin_name in possible_input_pins:
dest_key = (instr_uid, dest_pin_name)
if dest_key in wire_connections:
sources_list = wire_connections[dest_key]
input_sources_repr = []
for source_uid, source_pin in sources_list:
if source_uid == "POWERRAIL":
input_sources_repr.append({"type": "powerrail"})
elif source_uid in access_map:
input_sources_repr.append(access_map[source_uid])
elif source_uid in parts_and_calls_map:
input_sources_repr.append(
{
"type": "connection",
"source_instruction_type": parts_and_calls_map[
source_uid
]["type"],
"source_instruction_uid": source_uid,
"source_pin": source_pin,
}
)
else:
input_sources_repr.append(
{"type": "unknown_source", "uid": source_uid}
)
if len(input_sources_repr) == 1:
instruction_repr["inputs"][dest_pin_name] = input_sources_repr[0]
elif len(input_sources_repr) > 1:
instruction_repr["inputs"][dest_pin_name] = input_sources_repr
possible_output_pins = {"out", "out1", "Q", "eno", "RET_VAL", "q", "et"}
for src_pin_name in possible_output_pins:
source_key = (instr_uid, src_pin_name)
if source_key in source_connections:
dest_access_list = []
for dest_uid, dest_pin in source_connections[source_key]:
if dest_uid in access_map:
if access_map[dest_uid] not in dest_access_list:
dest_access_list.append(access_map[dest_uid])
if dest_access_list:
instruction_repr["outputs"][src_pin_name] = dest_access_list
all_logic_steps[instr_uid] = instruction_repr
# 4. EN Connection Inference
functional_block_types = {
"Move",
"Add",
"Sub",
"Mul",
"Div",
"Mod",
"Convert",
"Call",
"BLKMOV",
}
# Use MAPPED types for RLO generators
rlo_generators = {
"Contact",
"O",
"Eq",
"Ne",
"Gt",
"Lt",
"Ge",
"Le",
"And",
"Xor",
"P_TRIG",
"N_TRIG",
}
try:
sorted_uids = sorted(all_logic_steps.keys(), key=lambda x: int(x))
except ValueError:
sorted_uids = sorted(all_logic_steps.keys())
processed_for_en_inference = set()
current_logic_list_for_en = [all_logic_steps[uid] for uid in sorted_uids]
for i, instruction in enumerate(current_logic_list_for_en):
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"] # Use the mapped type
if (
instr_type in functional_block_types
and "en" not in instruction["inputs"]
and instr_uid not in processed_for_en_inference
):
inferred_en_source = None
if i > 0:
# Simple lookback to previous instruction
prev_instr = current_logic_list_for_en[i - 1]
prev_uid = prev_instr["instruction_uid"]
prev_type = prev_instr["type"]
# Check if previous instruction has a mappable 'out' or 'eno'
# We check source_connections map for actual wire existence
prev_has_out_wire = any(
dest[0] != "OPEN"
for dest in source_connections.get((prev_uid, "out"), [])
)
prev_has_eno_wire = any(
dest[0] != "OPEN"
for dest in source_connections.get((prev_uid, "eno"), [])
)
if prev_type in rlo_generators and prev_has_out_wire:
inferred_en_source = {
"type": "connection",
"source_instruction_uid": prev_uid,
"source_instruction_type": prev_type,
"source_pin": "out",
}
elif prev_type in functional_block_types and prev_has_eno_wire:
inferred_en_source = {
"type": "connection",
"source_instruction_uid": prev_uid,
"source_instruction_type": prev_type,
"source_pin": "eno",
}
if inferred_en_source:
all_logic_steps[instr_uid]["inputs"]["en"] = inferred_en_source
processed_for_en_inference.add(instr_uid)
# 5. Final Logic Ordering
network_logic = [all_logic_steps[uid] for uid in sorted_uids]
return {
"id": network_id,
"title": network_title,
"comment": network_comment,
"logic": network_logic,
}
# --- Main XML to JSON Conversion Function ---
# convert_xml_to_json - No significant changes needed from previous version
def convert_xml_to_json(xml_filepath, json_filepath):
print(f"Iniciando conversión de '{xml_filepath}' a '{json_filepath}'...")
if not os.path.exists(xml_filepath):
print(f"Error Crítico: Archivo XML no encontrado: '{xml_filepath}'")
return
try:
print("Paso 1: Parseando archivo XML...")
# Disable DTD loading for security and compatibility
parser = etree.XMLParser(
remove_blank_text=True, load_dtd=False, resolve_entities=False
)
tree = etree.parse(xml_filepath, parser)
root = tree.getroot()
print("Paso 1: Parseo XML completado.")
# Detect block type (FC or FB) - Look for SW.Blocks.FC or SW.Blocks.FB
block_node = None
block_xpath = ".//*[local-name()='SW.Blocks.FC' or local-name()='SW.Blocks.FB']"
block_list = root.xpath(block_xpath)
if not block_list:
print("Error Crítico: No se encontró <SW.Blocks.FC> o <SW.Blocks.FB>.")
return
block_node = block_list[0]
block_tag_name = etree.QName(
block_node.tag
).localname # SW.Blocks.FC or SW.Blocks.FB
print(
f"Paso 2: Bloque {block_tag_name} encontrado (ID={block_node.get('ID')})."
)
print("Paso 3: Extrayendo atributos del bloque...")
attribute_list_node = block_node.xpath("./*[local-name()='AttributeList']")
block_name_val, block_number_val, block_lang_val = "Unknown", None, "Unknown"
if attribute_list_node:
attr_list = attribute_list_node[0]
name_node = attr_list.xpath("./*[local-name()='Name']/text()")
block_name_val = name_node[0].strip() if name_node else block_name_val
num_node = attr_list.xpath("./*[local-name()='Number']/text()")
try:
block_number_val = int(num_node[0]) if num_node else None
except ValueError:
block_number_val = None # Handle non-integer Number
lang_node = attr_list.xpath(
"./*[local-name()='ProgrammingLanguage']/text()"
)
block_lang_val = lang_node[0].strip() if lang_node else block_lang_val
print(
f"Paso 3: Atributos: Nombre='{block_name_val}', Número={block_number_val}, Lenguaje='{block_lang_val}'"
)
else:
print("Advertencia: No se encontró AttributeList para el bloque.")
# Get block comment
block_comment_val = ""
comment_node_list = block_node.xpath(
"./*[local-name()='ObjectList']/*[local-name()='MultilingualText'][@CompositionName='Comment']"
)
if comment_node_list:
block_comment_val = get_multilingual_text(comment_node_list[0])
# Initialize result dictionary
result = {
"block_name": block_name_val,
"block_number": block_number_val,
"language": block_lang_val,
"block_comment": block_comment_val,
"interface": {},
"networks": [],
}
print("Paso 4: Extrayendo la interfaz del bloque...")
if attribute_list_node:
interface_node = attribute_list_node[0].xpath(
"./*[local-name()='Interface']"
)
if interface_node:
print("Paso 4: Nodo Interface encontrado.")
# Iterate through sections using the correct namespace prefix 'iface'
for section in interface_node[0].xpath(
".//iface:Section", namespaces=ns
):
section_name = section.get(
"Name"
) # Input, Output, InOut, Temp, Constant, Return
members = []
for member in section.xpath("./iface:Member", namespaces=ns):
member_name = member.get("Name")
member_dtype = member.get("Datatype")
if member_name and member_dtype:
member_info = {
"name": member_name,
"datatype": member_dtype,
}
members.append(member_info)
if members:
result["interface"][section_name] = members
if not result["interface"]:
print("Advertencia: Interface sin secciones iface:Section válidas.")
else:
print(
"Advertencia: No se encontró <Interface> DENTRO de <AttributeList>."
)
if not result["interface"]:
print("Advertencia: No se pudo extraer información de la interfaz.")
print("Paso 5: Extrayendo y PROCESANDO lógica de redes (CompileUnits)...")
networks_processed_count = 0
object_list_node = block_node.xpath("./*[local-name()='ObjectList']")
if object_list_node:
compile_units = object_list_node[0].xpath(
"./*[local-name()='SW.Blocks.CompileUnit']"
)
print(
f"Paso 5: Se encontraron {len(compile_units)} elementos SW.Blocks.CompileUnit."
)
for network_elem in compile_units:
networks_processed_count += 1
parsed_network = parse_network(network_elem)
if parsed_network and parsed_network.get("error") is None:
result["networks"].append(parsed_network)
elif parsed_network:
print(
f"Error: Falló parseo red ID={parsed_network.get('id')}: {parsed_network.get('error')}"
)
result["networks"].append(
parsed_network
) # Include network with error marker
else:
print(
f"Error Crítico: parse_network devolvió None para CompileUnit (ID={network_elem.get('ID')})."
)
if networks_processed_count == 0:
print("Advertencia: ObjectList sin SW.Blocks.CompileUnit.")
else:
print("Advertencia: No se encontró ObjectList.")
print("Paso 6: Escribiendo el resultado en el archivo JSON...")
if not result["interface"]:
print("ADVERTENCIA FINAL: 'interface' está vacía.")
if not result["networks"]:
print("ADVERTENCIA FINAL: 'networks' está vacía.")
try:
with open(json_filepath, "w", encoding="utf-8") as f:
json.dump(
result, f, indent=4, ensure_ascii=False
) # ensure_ascii=False is important
print(f"Paso 6: Escritura completada.")
print(f"Conversión finalizada. JSON guardado en: '{json_filepath}'")
except IOError as e:
print(
f"Error Crítico: No se pudo escribir JSON en '{json_filepath}'. Error: {e}"
)
except TypeError as e:
print(f"Error Crítico: Problema al serializar a JSON. Error: {e}")
except etree.XMLSyntaxError as e:
print(f"Error Crítico: Sintaxis XML en '{xml_filepath}'. Detalles: {e}")
except Exception as e:
print(f"Error Crítico: Error inesperado durante la conversión: {e}")
print("--- Traceback ---")
traceback.print_exc()
print("--- Fin Traceback ---")
# --- Punto de Entrada Principal ---
if __name__ == "__main__":
xml_file = "BlenderCtrl__Main.xml"
json_file = xml_file.replace(".xml", "_simplified.json")
convert_xml_to_json(xml_file, json_file)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,218 @@
# -*- coding: utf-8 -*-
import json
import os
import re
# --- Helper Functions ---
# Use the CORRECT version from x2_process.py
def format_variable_name(name):
"""Formats variable names for SCL, preserving quotes for structured names."""
if not name:
return "_INVALID_NAME_"
if name.startswith('"') and name.endswith('"'):
return name
prefix = ""
if name.startswith("#"):
prefix = "#"
name = name[1:]
if not name:
return "_INVALID_NAME_"
if not re.match(r"^[a-zA-Z_]", name[0]):
name = "_" + name
name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
return prefix + name
def generate_scl(processed_json_filepath, output_scl_filepath):
"""Genera un archivo SCL a partir del JSON procesado."""
if not os.path.exists(processed_json_filepath):
print(
f"Error: Archivo JSON procesado no encontrado en '{processed_json_filepath}'"
)
return
print(f"Cargando JSON procesado desde: {processed_json_filepath}")
try:
with open(processed_json_filepath, "r", encoding="utf-8") as f:
data = json.load(f)
except Exception as e:
print(f"Error al cargar JSON: {e}")
return
# --- Block Info ---
block_name_orig = data.get("block_name", "UnknownBlock")
block_number = data.get("block_number")
block_lang = data.get("language", "LAD")
block_comment = data.get("block_comment", "")
# --- Variable Detection ---
temp_vars_base = set() # Base names like _temp_...
stat_vars = {} # Quoted Name -> TYPE (Bool, TON, TONR)
temp_pattern = re.compile(r"#(_temp_[a-zA-Z0-9_]+)") # Capture base name after #
# Regex needs to capture the QUOTED name from SCL
stat_pattern_bool = re.compile(
r'("stat_(?:ptrig|ntrig|sr)_mem_[a-zA-Z0-9_]+")'
) # Edge/SR mem bits
stat_pattern_ton = re.compile(r'("stat_TON_[a-zA-Z0-9_]+")') # TON instances
stat_pattern_tonr = re.compile(r'("stat_TONR_[a-zA-Z0-9_]+")') # TONR instances
for network in data.get("networks", []):
for instruction in network.get("logic", []):
scl_code = instruction.get("scl", "")
if scl_code:
temp_vars_base.update(temp_pattern.findall(scl_code))
for name in stat_pattern_bool.findall(scl_code):
stat_vars[name] = "Bool"
for name in stat_pattern_ton.findall(scl_code):
stat_vars[name] = "TON"
for name in stat_pattern_tonr.findall(scl_code):
stat_vars[name] = "TONR"
has_stat = bool(stat_vars)
interface_temps_list = data.get("interface", {}).get("Temp", [])
has_temp = bool(temp_vars_base or interface_temps_list)
block_type_keyword = "FUNCTION_BLOCK" if has_stat or has_temp else "FUNCTION"
scl_block_name = format_variable_name(block_name_orig) # Format name correctly
print(f"Generando SCL para bloque: {scl_block_name} como {block_type_keyword}")
print(f"Variables temporales (#_temp_...) detectadas: {len(temp_vars_base)}")
print(f"Variables estáticas (stat_...) detectadas: {len(stat_vars)}")
# --- Build SCL Output ---
scl_output = []
scl_output.append(f"// Block Name (Original): {block_name_orig}")
if block_number:
scl_output.append(f"// Block Number: {block_number}")
scl_output.append(f"// Original Language: {block_lang}")
if block_comment:
scl_output.append(f"// Block Comment: {block_comment}")
scl_output.append("")
scl_output.append(f"{block_type_keyword} {scl_block_name}")
scl_output.append("{ S7_Optimized_Access := 'TRUE' }")
scl_output.append("VERSION : 0.1")
scl_output.append("")
# --- VAR Sections ---
def add_var_section(section_name, members_list):
if not members_list:
return
scl_output.append(f"VAR_{section_name}")
for member in members_list:
scl_name = format_variable_name(
member["name"]
) # Format interface var names
scl_output.append(f" {scl_name} : {member['datatype']};")
scl_output.append("END_VAR")
scl_output.append("")
interface_data = data.get("interface", {})
add_var_section("INPUT", interface_data.get("Input", []))
add_var_section("OUTPUT", interface_data.get("Output", []))
add_var_section("IN_OUT", interface_data.get("InOut", []))
if stat_vars:
scl_output.append("VAR_STAT")
for var_name_quoted in sorted(stat_vars.keys()):
var_type = stat_vars[var_name_quoted]
comment = (
f"// Instance for {var_type}"
if var_type in ["TON", "TONR"]
else "// Memory Bit"
)
scl_output.append(f" {var_name_quoted} : {var_type}; {comment}")
scl_output.append("END_VAR")
scl_output.append("")
declared_temps_formatted = set()
temp_declarations = []
if interface_temps_list:
for var in interface_temps_list:
scl_name = format_variable_name(var["name"])
temp_declarations.append(
f" {scl_name} : {var['datatype']}; // From Interface"
)
declared_temps_formatted.add(scl_name)
if temp_vars_base:
for base_name in sorted(list(temp_vars_base)):
# Declare using the base name, quoted
scl_name_declare = format_variable_name(f'"{base_name}"')
if scl_name_declare not in declared_temps_formatted:
# Simple inference based on common pin names in the base name
inferred_type = "Bool" # Default
if "ret_val" in base_name:
inferred_type = "Int"
elif "_et" in base_name:
inferred_type = "Time"
temp_declarations.append(
f" {scl_name_declare} : {inferred_type}; // Auto-generated temporary"
)
declared_temps_formatted.add(scl_name_declare)
if temp_declarations:
scl_output.append("VAR_TEMP")
scl_output.extend(temp_declarations)
scl_output.append("END_VAR")
scl_output.append("")
# --- Block Body ---
scl_output.append("BEGIN")
scl_output.append("")
for i, network in enumerate(data.get("networks", [])):
network_title = network.get("title", f'Network {network.get("id")}')
network_comment = network.get("comment", "")
scl_output.append(f" // Network {i+1}: {network_title}")
if network_comment:
for line in network_comment.splitlines():
scl_output.append(f" // {line}")
scl_output.append("")
network_has_code = False
for instruction in network.get("logic", []):
if instruction.get("grouped", False):
continue
scl_code = instruction.get("scl")
if scl_code:
lines_to_add = []
for line in scl_code.splitlines():
line_strip = line.strip()
is_simple_info_comment = line_strip.startswith(
("// RLO:", "// Comparison Eq", "// Logic O")
)
# Keep essential comments (Errors, Grouping, Memory Updates) and actual SCL
if (
not is_simple_info_comment
or line_strip.startswith("// ERROR")
or line_strip.startswith(GROUPED_COMMENT)
or "Edge Memory Update" in line_strip
):
lines_to_add.append(line)
if lines_to_add:
network_has_code = True
for line in lines_to_add:
scl_output.append(f" {line}")
if network_has_code:
scl_output.append("")
end_keyword = (
"END_FUNCTION_BLOCK"
if block_type_keyword == "FUNCTION_BLOCK"
else "END_FUNCTION"
)
scl_output.append(end_keyword)
# --- Write File ---
print(f"Escribiendo archivo SCL en: {output_scl_filepath}")
try:
with open(output_scl_filepath, "w", encoding="utf-8") as f:
for line in scl_output:
f.write(line + "\n")
print("Generación de SCL completada.")
except Exception as e:
print(f"Error al escribir el archivo SCL: {e}")
# --- Ejecución ---
if __name__ == "__main__":
xml_filename_base = "BlenderCtrl__Main"
input_json_file = f"{xml_filename_base}_simplified_processed.json"
output_scl_file = input_json_file.replace("_simplified_processed.json", ".scl")
generate_scl(input_json_file, output_scl_file)

View File

@ -713,7 +713,7 @@ def convert_xml_to_json(xml_filepath, json_filepath):
# --- Punto de Entrada Principal ---
if __name__ == "__main__":
xml_file = "BlenderCtrl__Main.xml" # CAMBIAR AL NUEVO ARCHIVO XML
xml_file = "TestLAD.xml" # CAMBIAR AL NUEVO ARCHIVO XML
json_file = xml_file.replace(
".xml", "_simplified.json"
) # Nombre de salida dinámico

View File

@ -1447,7 +1447,7 @@ def process_json_to_scl(json_filepath):
# --- Ejecución ---
if __name__ == "__main__":
# Asegúrate de que el nombre base del archivo XML sea correcto
xml_filename_base = "BlenderCtrl__Main" # Cambia esto si tu XML se llama diferente
xml_filename_base = "TestLAD" # Cambia esto si tu XML se llama diferente
input_json_file = f"{xml_filename_base}_simplified.json"
if not os.path.exists(input_json_file):

View File

@ -197,7 +197,7 @@ def generate_scl(processed_json_filepath, output_scl_filepath):
# --- Ejecución ---
if __name__ == "__main__":
xml_file = "BlenderCtrl__Main.xml" # CAMBIAR AL NUEVO ARCHIVO XML
xml_file = "TestLAD.xml" # CAMBIAR AL NUEVO ARCHIVO XML
input_json_file = xml_file.replace(
".xml", "_simplified_processed.json"
) # Nombre de salida dinámico