Compare commits

..

No commits in common. "c22f98d865a91da77591584c985825f72c441cc1" and "98dbc7a5d7b0e111027d5de34e2aab3edfc82fbc" have entirely different histories.

83 changed files with 7237 additions and 12818 deletions

View File

@ -1,97 +0,0 @@
{
"block_name": "BlenderCtrl_ProdModeInit",
"block_number": 2012,
"language": "LAD",
"block_comment": "",
"interface": {
"Return": [
{
"name": "Ret_Val",
"datatype": "Void"
}
]
},
"networks": [
{
"id": "9",
"title": "PID Reset Integral",
"comment": "",
"logic": [
{
"instruction_uid": "21",
"uid": "21",
"type": "Call",
"block_name": "BlenderPID_PIDResInteg",
"block_type": "FC",
"inputs": {
"en": {
"type": "powerrail"
}
},
"outputs": {}
}
],
"language": "LAD"
},
{
"id": "1A",
"title": "Ctrl Init Errors",
"comment": "",
"logic": [
{
"instruction_uid": "21",
"uid": "21",
"type": "Call",
"block_name": "BlenderCtrl_InitErrors",
"block_type": "FC",
"inputs": {
"en": {
"type": "powerrail"
}
},
"outputs": {}
}
],
"language": "LAD"
},
{
"id": "2B",
"title": "RunOut Counter",
"comment": "",
"logic": [
{
"instruction_uid": "23",
"uid": "23",
"type": "Move",
"template_values": {
"Card": "Cardinality"
},
"negated_pins": {},
"inputs": {
"en": {
"type": "powerrail"
},
"in": {
"uid": "21",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Real",
"value": 0.0
}
},
"outputs": {
"out1": [
{
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"HMI_Variables_Status\".\"Analog_Values\".\"TP301RunOutCount\""
}
]
}
}
],
"language": "LAD"
}
]
}

View File

@ -1,100 +0,0 @@
{
"block_name": "BlenderCtrl_ProdModeInit",
"block_number": 2012,
"language": "LAD",
"block_comment": "",
"interface": {
"Return": [
{
"name": "Ret_Val",
"datatype": "Void"
}
]
},
"networks": [
{
"id": "9",
"title": "PID Reset Integral",
"comment": "",
"logic": [
{
"instruction_uid": "21",
"uid": "21",
"type": "Call_FC_sympy_processed",
"block_name": "BlenderPID_PIDResInteg",
"block_type": "FC",
"inputs": {
"en": {
"type": "powerrail"
}
},
"outputs": {},
"scl": "BlenderPID_PIDResInteg();"
}
],
"language": "LAD"
},
{
"id": "1A",
"title": "Ctrl Init Errors",
"comment": "",
"logic": [
{
"instruction_uid": "21",
"uid": "21",
"type": "Call_FC_sympy_processed",
"block_name": "BlenderCtrl_InitErrors",
"block_type": "FC",
"inputs": {
"en": {
"type": "powerrail"
}
},
"outputs": {},
"scl": "BlenderCtrl_InitErrors();"
}
],
"language": "LAD"
},
{
"id": "2B",
"title": "RunOut Counter",
"comment": "",
"logic": [
{
"instruction_uid": "23",
"uid": "23",
"type": "Move_sympy_processed",
"template_values": {
"Card": "Cardinality"
},
"negated_pins": {},
"inputs": {
"en": {
"type": "powerrail"
},
"in": {
"uid": "21",
"scope": "LiteralConstant",
"type": "constant",
"datatype": "Real",
"value": 0.0
}
},
"outputs": {
"out1": [
{
"uid": "22",
"scope": "GlobalVariable",
"type": "variable",
"name": "\"HMI_Variables_Status\".\"Analog_Values\".\"TP301RunOutCount\""
}
]
},
"scl": "\"HMI_Variables_Status\".\"Analog_Values\".\"TP301RunOutCount\" := 0.0;"
}
],
"language": "LAD"
}
]
}

View File

@ -1,30 +0,0 @@
// Block Name (Original): BlenderCtrl_ProdModeInit
// Block Number: 2012
// Original Language: LAD
FUNCTION_BLOCK "BlenderCtrl_ProdModeInit"
{ S7_Optimized_Access := 'TRUE' }
VERSION : 0.1
VAR_RETURN
Ret_Val : Void;
END_VAR
VAR_TEMP
END_VAR
BEGIN
// Network 1: PID Reset Integral (Original Language: LAD)
BlenderPID_PIDResInteg();
// Network 2: Ctrl Init Errors (Original Language: LAD)
BlenderCtrl_InitErrors();
// Network 3: RunOut Counter (Original Language: LAD)
"HMI_Variables_Status"."Analog_Values"."TP301RunOutCount" := 0.0;
END_FUNCTION_BLOCK

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -6,8 +6,13 @@ FUNCTION_BLOCK "BlenderCtrl__Main"
{ S7_Optimized_Access := 'TRUE' } { S7_Optimized_Access := 'TRUE' }
VERSION : 0.1 VERSION : 0.1
VAR_RETURN VAR_INPUT
Ret_Val : Void; END_VAR
VAR_OUTPUT
END_VAR
VAR_IN_OUT
END_VAR END_VAR
VAR_TEMP VAR_TEMP
@ -38,12 +43,13 @@ BEGIN
// Network 4: Emergency Pressed (Original Language: LAD) // Network 4: Emergency Pressed (Original Language: LAD)
"gEmergencyPressed" := "M19000" AND NOT "gIN_VoltageOk"; // Logic moved to Coil 26
"M19000" := "gIN_VoltageOk"; // N_TRIG("gIN_VoltageOk") - Mem: "M19000" "gEmergencyPressed" := NOT "gIN_VoltageOk" AND "M19000";
"M19000" := "gIN_VoltageOk"; // N_TRIG("gIN_VoltageOk")
// Network 5: Air and CO2 pressure ok and auxiliary ok (Original Language: LAD) // Network 5: Air and CO2 pressure ok and auxiliary ok (Original Language: LAD)
"gBlenderSuppliesOk" := ("gIN_VoltageOk" AND "gIN_LinePressCO2Ok" AND "HMI_Digital"."_PAL_S11"."Filtered") OR ("gIN_VoltageOk" AND "gIN_LinePressCO2Ok" AND NOT "Disable_Bit") OR ("gIN_VoltageOk" AND "gWorkshopTest" AND "HMI_Digital"."_PAL_S11"."Filtered" AND NOT "gWorkshop_Co2_Presence" AND NOT "gWorkshop_CIP_Signals") OR ("gIN_VoltageOk" AND "gWorkshopTest" AND NOT "gWorkshop_Co2_Presence" AND NOT "gWorkshop_CIP_Signals" AND NOT "Disable_Bit"); "gBlenderSuppliesOk" := (("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered") OR ("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND (NOT "Disable_Bit") AND "gIN_VoltageOk";
// Network 6: Blender State Num (Original Language: LAD) // Network 6: Blender State Num (Original Language: LAD)
@ -51,7 +57,7 @@ BEGIN
// Network 7: Delay Power On (Original Language: LAD) // Network 7: Delay Power On (Original Language: LAD)
"mDelayPowerOnTmr"(IN := "FirstScan", PT := S5T#2S); // TODO: Declarar "mDelayPowerOnTmr" : TP; "mDelayPowerOnTmr"(IN := "FirstScan", PT := S5T#2S); // TODO: Declarar "mDelayPowerOnTmr" : TP; en VAR_STAT o VAR
// Network 8: Production Mode (Original Language: LAD) // Network 8: Production Mode (Original Language: LAD)
@ -59,56 +65,56 @@ BEGIN
// Network 9: CIp Mode (Original Language: LAD) // Network 9: CIp Mode (Original Language: LAD)
"gBlenderCIPMode" := NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP"; "gBlenderCIPMode" := (NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP");
IF NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP" THEN IF (NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP") THEN
"HMI_Variables_Status"."Procedures"."BlenderStateNum" := 19; "HMI_Variables_Status"."Procedures"."BlenderStateNum" := 19;
END_IF; END_IF;
// Network 10: Error Faults (Original Language: LAD) // Network 10: Error Faults (Original Language: LAD)
IF NOT "AUX FALSE" THEN IF (NOT "AUX FALSE") THEN
"HMI_Variables_Status"."Meters"."QTM3012_PRD_Fault" := FALSE; "HMI_Variables_Status"."Meters"."QTM3012_PRD_Fault" := FALSE;
END_IF; END_IF;
IF NOT "AUX FALSE" THEN IF (NOT "AUX FALSE") THEN
"gmPDS2000_Error_Fault" := FALSE; "gmPDS2000_Error_Fault" := FALSE;
END_IF; END_IF;
IF NOT "AUX FALSE" THEN IF (NOT "AUX FALSE") THEN
"HMI_Variables_Status"."Meters"."QTM3012_PRD_Run" := FALSE; "HMI_Variables_Status"."Meters"."QTM3012_PRD_Run" := FALSE;
END_IF; END_IF;
IF NOT "AUX FALSE" THEN IF (NOT "AUX FALSE") THEN
"gNoFreezeProductMeter" := FALSE; "gNoFreezeProductMeter" := FALSE;
END_IF; END_IF;
// Network 11: Filler Bottle Count Used to push Product (Original Language: LAD) // Network 11: Filler Bottle Count Used to push Product (Original Language: LAD)
"System_RunOut_Variables"."ProdPipeRunOutFillerBott" := NOT "System_RunOut_Variables"."ProdPipeRunOutWaterCount"; "System_RunOut_Variables"."ProdPipeRunOutFillerBott" := (NOT "System_RunOut_Variables"."ProdPipeRunOutWaterCount");
// Network 12: Water Bypass Enable (Original Language: LAD) // Network 12: Water Bypass Enable (Original Language: LAD)
"gStillWaterByPassEn" := ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" AND "Blender_Variables_Pers"."gWaterRecipe" AND NOT "Blender_Variables_Pers"."gCarboStillRecipe") OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND "Blender_Variables_Pers"."gWaterRecipe" AND NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation" AND NOT "Blender_Variables_Pers"."gCarboStillRecipe"); "gStillWaterByPassEn" := (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation"))) AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe");
// Network 13: Still Water Bypass (Original Language: LAD) // Network 13: Still Water Bypass (Original Language: LAD)
"gBlendFiStillWaterByPass" := "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" AND "Blender_Variables_Pers"."gWaterRecipe" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND NOT "Blender_Variables_Pers"."gCarboStillRecipe"; "gBlendFiStillWaterByPass" := (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass") AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe");
// Network 14: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD) // Network 14: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD)
"gHVP301_Open" := ("gSyrupRoomEn" AND "gBlenderCIPMode" AND "gIN_CIP_CIPRunning" AND "Procedure_Variables"."Blender_Run"."Running" AND NOT "gIN_HVP301_Aux") OR ("gSyrupRoomEn" AND "Procedure_Variables"."FTP302Line_Preparation"."Done" AND NOT "gIN_HVP301_Aux" AND NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled" AND NOT "Procedure_Variables"."Syr_RunOut"."Done"); "gHVP301_Open" := (("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND (NOT "Procedure_Variables"."Syr_RunOut"."Done") OR (((("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND "gBlenderCIPMode") AND "gIN_CIP_CIPRunning") AND "Procedure_Variables"."Blender_Run"."Running");
// Network 15: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD) // Network 15: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD)
"mHVM302_Dly"(IN := "gIN_HVM302_Aux", PT := S5T#1S); // TODO: Declarar "mHVM302_Dly" : TON; "mHVM302_Dly"(IN := "gIN_HVM302_Aux", PT := S5T#1S); // TODO: Declarar "mHVM302_Dly" : TON; en VAR_STAT o VAR
"gHVM302_Open" := "mHVM302_Dly".Q; "gHVM302_Open" := "mHVM302_Dly".Q;
// Network 16: Maselli Control (Original Language: LAD) // Network 16: Maselli Control (Original Language: LAD)
IF Eq("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType", 6) THEN IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 6 THEN
Maselli_PA_Control(); Maselli_PA_Control();
END_IF; END_IF;
// Network 17: mPDS Control (Original Language: LAD) // Network 17: mPDS Control (Original Language: LAD)
IF Eq("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType", 5) THEN IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 5 THEN
mPDS_PA_Control(); mPDS_PA_Control();
END_IF; END_IF;
@ -123,7 +129,7 @@ BEGIN
// CALL "GetProdBrixCO2_FromAn" // CALL "GetProdBrixCO2_FromAn"
// NOP 0 // NOP 0
IF Eq("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType", 3) THEN IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 3 THEN
GetProdBrixCO2_Anal_Inpt(); GetProdBrixCO2_Anal_Inpt();
END_IF; END_IF;
@ -151,21 +157,24 @@ BEGIN
// Network 25: Production ONS (Original Language: LAD) // Network 25: Production ONS (Original Language: LAD)
"gProductionONS" := "gBlenderProdMode" AND NOT "mDelayPowerOnTmr" AND NOT "M19001"; // PBox Logic moved to consumer Coil
"gProductionONS" := ("gBlenderProdMode" AND NOT "M19001") AND (NOT "mDelayPowerOnTmr");
// Network 26: Blender Prod Mode Init (Original Language: LAD) // Network 26: Blender Prod Mode Init (Original Language: LAD)
IF ("gProductionONS" AND NOT "Blender_Variables_Pers"."gBlenderStarted") OR ("Procedure_Variables"."Blender_Rinse"."ONS_Done" AND NOT "Blender_Variables_Pers"."gBlenderStarted") THEN IF ("gProductionONS" OR "Procedure_Variables"."Blender_Rinse"."ONS_Done") AND (NOT "Blender_Variables_Pers"."gBlenderStarted") THEN
BlenderCtrl_ProdModeInit(); BlenderCtrl_ProdModeInit();
END_IF; END_IF;
// Network 27: Rinse ONS (Original Language: LAD) // Network 27: Rinse ONS (Original Language: LAD)
"gRinseONS" := "HMI_Variables_Status"."System"."Blender_Prod_CIP" AND NOT "mDelayPowerOnTmr" AND NOT "M19002"; // PBox Logic moved to consumer Coil
"gRinseONS" := ("HMI_Variables_Status"."System"."Blender_Prod_CIP" AND NOT "M19002") AND (NOT "mDelayPowerOnTmr");
// Network 28: CIP ONS (Original Language: LAD) // Network 28: CIP ONS (Original Language: LAD)
"gCIPONS" := "gBlenderCIPMode" AND NOT "mDelayPowerOnTmr" AND NOT "M19003"; // PBox Logic moved to consumer Coil
"gCIPONS" := ("gBlenderCIPMode" AND NOT "M19003") AND (NOT "mDelayPowerOnTmr");
// Network 29: CIp Mode Init (Original Language: LAD) // Network 29: CIp Mode Init (Original Language: LAD)
@ -219,7 +228,7 @@ BEGIN
// Network 41: Blend Procedure Data (Original Language: LAD) // Network 41: Blend Procedure Data (Original Language: LAD)
IF NOT "mDelayPowerOnTmr" THEN IF (NOT "mDelayPowerOnTmr") THEN
"Blender_Procedure Data"(); "Blender_Procedure Data"();
END_IF; END_IF;
@ -259,11 +268,11 @@ BEGIN
// Network 50: ResetTotalizer (Original Language: LAD) // Network 50: ResetTotalizer (Original Language: LAD)
"mResetTotalizerTmr"(IN := "gBlendResetTotalizer", PT := S5T#2S); // TODO: Declarar "mResetTotalizerTmr" : TP; "mResetTotalizerTmr"(IN := "gBlendResetTotalizer", PT := S5T#2S); // TODO: Declarar "mResetTotalizerTmr" : TP; en VAR_STAT o VAR
// Network 51: ResetWaterTot (Original Language: LAD) // Network 51: ResetWaterTot (Original Language: LAD)
"mResetFTN301TotTmr"(IN := "gFTN301_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTN301TotTmr" : TP; "mResetFTN301TotTmr"(IN := "gFTN301_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTN301TotTmr" : TP; en VAR_STAT o VAR
"mResetWaterTot" := "mResetFTN301TotTmr".Q; "mResetWaterTot" := "mResetFTN301TotTmr".Q;
// Network 52: Water VFM Reset Totalizer (Original Language: LAD) // Network 52: Water VFM Reset Totalizer (Original Language: LAD)
@ -274,8 +283,8 @@ BEGIN
// Network 53: ResetCO2Tot (Original Language: LAD) // Network 53: ResetCO2Tot (Original Language: LAD)
"mResetFTP302TotTmr"(IN := "mResetTotalizerTmr" OR "gFTP302_ResetTot", PT := S5T#2S); // TODO: Declarar "mResetFTP302TotTmr" : TP; "mResetFTP302TotTmr"(IN := "gFTP302_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTP302TotTmr" : TP; en VAR_STAT o VAR
"mResetSyrupTot" := "gSyrupRoomEn" AND "mResetFTP302TotTmr".Q; "mResetSyrupTot" := "mResetFTP302TotTmr".Q AND "gSyrupRoomEn";
// Network 54: Syrup MFM Reset Totalizer (Original Language: LAD) // Network 54: Syrup MFM Reset Totalizer (Original Language: LAD)
@ -285,7 +294,7 @@ BEGIN
// Network 55: ResetProductTot (Original Language: LAD) // Network 55: ResetProductTot (Original Language: LAD)
"mResetFTM303TotTmr"(IN := "mResetTotalizerTmr" OR "gFTM303_ResetTot", PT := S5T#2S); // TODO: Declarar "mResetFTM303TotTmr" : TP; "mResetFTM303TotTmr"(IN := "gFTM303_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTM303TotTmr" : TP; en VAR_STAT o VAR
"mResetCO2Tot" := "mResetFTM303TotTmr".Q; "mResetCO2Tot" := "mResetFTM303TotTmr".Q;
// Network 56: CO2 MFM Reset Tot (Original Language: LAD) // Network 56: CO2 MFM Reset Tot (Original Language: LAD)
@ -296,7 +305,7 @@ BEGIN
// Network 57: ResetCO2Tot (Original Language: LAD) // Network 57: ResetCO2Tot (Original Language: LAD)
"mResetProductTotTmr"(IN := "mResetTotalizerTmr" OR "gProductMFMResetTot", PT := S5T#2S); // TODO: Declarar "mResetProductTotTmr" : TP; "mResetProductTotTmr"(IN := "gProductMFMResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetProductTotTmr" : TP; en VAR_STAT o VAR
"mResetProductTot" := "mResetProductTotTmr".Q; "mResetProductTot" := "mResetProductTotTmr".Q;
// Network 58: Reset Totalizer (Original Language: LAD) // Network 58: Reset Totalizer (Original Language: LAD)
@ -313,7 +322,7 @@ BEGIN
// Network 60: Blender Ctrl Command (Original Language: LAD) // Network 60: Blender Ctrl Command (Original Language: LAD)
IF NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Simulation" THEN IF (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Simulation") THEN
BlenderCtrl_MFM_Command(); BlenderCtrl_MFM_Command();
END_IF; END_IF;
@ -331,7 +340,8 @@ BEGIN
// Network 64: All Auto (Original Language: LAD) // Network 64: All Auto (Original Language: LAD)
IF ("M19011" AND NOT "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Command") OR ("M19011" AND NOT "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Enable") THEN // NBox Logic moved to consumer Coil
IF NOT ("HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Command" AND "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Enable") AND "M19011" THEN
BlenderCtrl_All_Auto(); BlenderCtrl_All_Auto();
END_IF; END_IF;
"HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Light" := "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Command" AND "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Enable"; "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Light" := "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Command" AND "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Enable";
@ -342,10 +352,10 @@ BEGIN
// Network 66: Mod Copy Recipe (Original Language: LAD) // Network 66: Mod Copy Recipe (Original Language: LAD)
"mAux_FP_M700_1" := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND NOT "mFP_Recip_Main_Page"; "mAux_FP_M700_1" := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND (NOT "mFP_Recip_Main_Page");
"mFP_Recip_Main_Page" := "HMI_Variables_Cmd"."Recipe"."Main_Page"; "mFP_Recip_Main_Page" := "HMI_Variables_Cmd"."Recipe"."Main_Page";
"T_Pulse_Recipe_Edit"(IN := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND "HMI_Variables_Cmd"."Recipe"."Edit", PT := S5T#500ms); // TODO: Declarar "T_Pulse_Recipe_Edit" : TP; "T_Pulse_Recipe_Edit"(IN := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND "HMI_Variables_Cmd"."Recipe"."Edit", PT := S5T#500ms); // TODO: Declarar "T_Pulse_Recipe_Edit" : TP; en VAR_STAT o VAR
IF "T_Pulse_Recipe_Edit" AND "T_Pulse_Recipe_Edit".Q THEN IF "T_Pulse_Recipe_Edit".Q AND "T_Pulse_Recipe_Edit" THEN
"HMI_Variables_Cmd"."Recipe"."Edit" := FALSE; "HMI_Variables_Cmd"."Recipe"."Edit" := FALSE;
END_IF; END_IF;
IF "mAux_FP_M700_1" THEN IF "mAux_FP_M700_1" THEN

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -6,51 +6,70 @@ FUNCTION_BLOCK "TestLAD"
{ S7_Optimized_Access := 'TRUE' } { S7_Optimized_Access := 'TRUE' }
VERSION : 0.1 VERSION : 0.1
VAR_RETURN VAR_INPUT
Ret_Val : Real; END_VAR
VAR_OUTPUT
END_VAR
VAR_IN_OUT
END_VAR END_VAR
VAR_TEMP VAR_TEMP
mWaterMaxFlow : Real; All_Auto_RETVAL : Int;
mWaterMinFlow : Real; Reset_SP_Word_RETVAL : Int;
mSyrupMaxFlow : Real; mResetWaterTot : Bool;
mSyrupMinFlow : Real; mResetSyrupTot : Bool;
mMinRatio : Real; mResetCO2Tot : Bool;
mMaxRatio : Real; mResetProductTot : Bool;
mBevBrixMax : Real; Block_Move_Err : Int;
mBevBrixMin : Real;
END_VAR END_VAR
BEGIN BEGIN
// Network 1: (Original Language: SCL) // Network 1: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD)
IF "Blender_Variables".gSP_H2O <> 0 THEN "gHVP301_Open" := (("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND (NOT "Procedure_Variables"."Syr_RunOut"."Done") OR (((("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND "gBlenderCIPMode") AND "gIN_CIP_CIPRunning") AND "Procedure_Variables"."Blender_Run"."Running");
"Blender_Variables".gWaterVFMCalcError := "Blender_Variables".gWaterVFMMeasError / 100 * "Blender_Variables".gSP_H2O;
// Network 2: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD)
"mHVM302_Dly"(IN := "gIN_HVM302_Aux", PT := S5T#1S); // TODO: Declarar "mHVM302_Dly" : TON; en VAR_STAT o VAR
"gHVM302_Open" := "mHVM302_Dly".Q;
// Network 3: ResetTotalizer (Original Language: LAD)
"mResetTotalizerTmr"(IN := "gBlendResetTotalizer", PT := S5T#2S); // TODO: Declarar "mResetTotalizerTmr" : TP; en VAR_STAT o VAR
// Network 4: ResetWaterTot (Original Language: LAD)
"mResetFTN301TotTmr"(IN := "gFTN301_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTN301TotTmr" : TP; en VAR_STAT o VAR
"mResetWaterTot" := "mResetFTN301TotTmr".Q;
// Network 5: ResetCO2Tot (Original Language: LAD)
"mResetFTP302TotTmr"(IN := "gFTP302_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTP302TotTmr" : TP; en VAR_STAT o VAR
"mResetSyrupTot" := "mResetFTP302TotTmr".Q AND "gSyrupRoomEn";
// Network 6: ResetProductTot (Original Language: LAD)
"mResetFTM303TotTmr"(IN := "gFTM303_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTM303TotTmr" : TP; en VAR_STAT o VAR
"mResetCO2Tot" := "mResetFTM303TotTmr".Q;
// Network 7: ResetCO2Tot (Original Language: LAD)
"mResetProductTotTmr"(IN := "gProductMFMResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetProductTotTmr" : TP; en VAR_STAT o VAR
"mResetProductTot" := "mResetProductTotTmr".Q;
// Network 8: Mod Copy Recipe (Original Language: LAD)
"mAux_FP_M700_1" := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND (NOT "mFP_Recip_Main_Page");
"mFP_Recip_Main_Page" := "HMI_Variables_Cmd"."Recipe"."Main_Page";
"T_Pulse_Recipe_Edit"(IN := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND "HMI_Variables_Cmd"."Recipe"."Edit", PT := S5T#500ms); // TODO: Declarar "T_Pulse_Recipe_Edit" : TP; en VAR_STAT o VAR
IF "T_Pulse_Recipe_Edit".Q AND "T_Pulse_Recipe_Edit" THEN
"HMI_Variables_Cmd"."Recipe"."Edit" := FALSE;
END_IF; END_IF;
IF "Blender_Variables".gSP_SYR <> 0 THEN IF "mAux_FP_M700_1" THEN
"Blender_Variables".gSyrupMFMCalcError := ("Blender_Variables".gSyrupMFMMeasError / 100 + ("Blender_Variables".gSyrupMFMZeroStab / ("Blender_Variables".gSP_SYR * 60)) / 100) * "Blender_Variables".gSP_SYR; "HMI_Variables_Cmd"."Recipe"."Edit" := TRUE;
END_IF; END_IF;
IF "Blender_Variables".gSP_CO2 <> 0 THEN
"Blender_Variables".gCO2MFMCalcError := ("Blender_Variables".gCO2MFMMeasError / 100 + ("Blender_Variables".gCO2MFMZeroStab / ("Blender_Variables".gSP_CO2 * 60 / 1000)) / 100) * "Blender_Variables".gSP_CO2;
END_IF;
"mWaterMaxFlow" := "Blender_Variables".gSP_H2O + "Blender_Variables".gWaterVFMCalcError;
"mWaterMinFlow" := "Blender_Variables".gSP_H2O - "Blender_Variables".gWaterVFMCalcError;
IF "HMI_Blender_Parameters".Actual_Recipe_Parameters._SyrupDensity <> 0 THEN
"mSyrupMaxFlow" := ("Blender_Variables".gSP_SYR + "Blender_Variables".gSyrupMFMCalcError) / "HMI_Blender_Parameters".Actual_Recipe_Parameters._SyrupDensity;
"mSyrupMinFlow" := ("Blender_Variables".gSP_SYR - "Blender_Variables".gSyrupMFMCalcError) / "HMI_Blender_Parameters".Actual_Recipe_Parameters._SyrupDensity;
END_IF;
IF "mSyrupMaxFlow" <> 0 THEN
"mMinRatio" := "mWaterMinFlow" / "mSyrupMaxFlow";
END_IF;
IF "mSyrupMinFlow" <> 0 THEN
"mMaxRatio" := "mWaterMaxFlow" / "mSyrupMinFlow";
END_IF;
IF "HMI_Blender_Parameters".Actual_Recipe_Parameters._SyrupDensity <> 0 THEN
"mBevBrixMax" := "HMI_Blender_Parameters".Actual_Recipe_Parameters._SyrupBrix / (("mMinRatio" / "HMI_Blender_Parameters".Actual_Recipe_Parameters._SyrupDensity) + 1);
"mBevBrixMin" := "HMI_Blender_Parameters".Actual_Recipe_Parameters._SyrupBrix / (("mMaxRatio" / "HMI_Blender_Parameters".Actual_Recipe_Parameters._SyrupDensity) + 1);
END_IF;
"Blender_Variables".gBlenderBlendMaxError := "mBevBrixMax" - "mBevBrixMin";
"TestLAD" := "Blender_Variables".gBlenderBlendMaxError;
END_FUNCTION_BLOCK END_FUNCTION_BLOCK

View File

@ -1,763 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<Document>
<Engineering version="V18" />
<SW.Blocks.FC ID="0">
<AttributeList>
<Interface><Sections xmlns="http://www.siemens.com/automation/Openness/SW/Interface/v5">
<Section Name="Input" />
<Section Name="Output" />
<Section Name="InOut" />
<Section Name="Temp">
<Member Name="All_Auto_RETVAL" Datatype="Int" />
<Member Name="Reset_SP_Word_RETVAL" Datatype="Int" />
<Member Name="mResetWaterTot" Datatype="Bool" />
<Member Name="mResetSyrupTot" Datatype="Bool" />
<Member Name="mResetCO2Tot" Datatype="Bool" />
<Member Name="mResetProductTot" Datatype="Bool" />
<Member Name="Block_Move_Err" Datatype="Int" />
<Member Name="Dim_HMI_Device" Datatype="Int" />
<Member Name="PDim_HMI_Device" Datatype="DWord" />
<Member Name="Dim_HMI_PID" Datatype="Int" />
<Member Name="PDim_HMI_PID" Datatype="DWord" />
</Section>
<Section Name="Constant" />
<Section Name="Return">
<Member Name="Ret_Val" Datatype="Void" />
</Section>
</Sections></Interface>
<MemoryLayout>Optimized</MemoryLayout>
<Name>TestLAD</Name>
<Namespace />
<Number>2</Number>
<ProgrammingLanguage>LAD</ProgrammingLanguage>
<SetENOAutomatically>false</SetENOAutomatically>
</AttributeList>
<ObjectList>
<MultilingualText ID="1" CompositionName="Comment">
<ObjectList>
<MultilingualTextItem ID="2" CompositionName="Items">
<AttributeList>
<Culture>it-IT</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="3" CompositionName="Items">
<AttributeList>
<Culture>de-DE</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="4" CompositionName="Items">
<AttributeList>
<Culture>en-US</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="5" CompositionName="Items">
<AttributeList>
<Culture>es-ES</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="6" CompositionName="Items">
<AttributeList>
<Culture>fr-FR</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="7" CompositionName="Items">
<AttributeList>
<Culture>zh-CN</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="8" CompositionName="Items">
<AttributeList>
<Culture>ja-JP</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
</ObjectList>
</MultilingualText>
<SW.Blocks.CompileUnit ID="9" CompositionName="CompileUnits">
<AttributeList>
<NetworkSource><StatementList xmlns="http://www.siemens.com/automation/Openness/SW/NetworkSource/StatementList/v4">
<StlStatement UId="24">
<StlToken Text="SET" />
</StlStatement>
<StlStatement UId="25">
<StlToken Text="R" />
<Access Scope="GlobalVariable">
<Symbol>
<Component Name="HMI_Alarms" />
<Component Name="gH_Message" AccessModifier="Array">
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>DInt</ConstantType>
<ConstantValue>3</ConstantValue>
</Constant>
</Access>
</Component>
</Symbol>
</Access>
</StlStatement>
</StatementList></NetworkSource>
<ProgrammingLanguage>STL</ProgrammingLanguage>
</AttributeList>
<ObjectList>
<MultilingualText ID="A" CompositionName="Comment">
<ObjectList>
<MultilingualTextItem ID="B" CompositionName="Items">
<AttributeList>
<Culture>it-IT</Culture>
<Text> DEVICE</Text>
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="C" CompositionName="Items">
<AttributeList>
<Culture>de-DE</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="D" CompositionName="Items">
<AttributeList>
<Culture>en-US</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="E" CompositionName="Items">
<AttributeList>
<Culture>es-ES</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="F" CompositionName="Items">
<AttributeList>
<Culture>fr-FR</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="10" CompositionName="Items">
<AttributeList>
<Culture>zh-CN</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="11" CompositionName="Items">
<AttributeList>
<Culture>ja-JP</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
</ObjectList>
</MultilingualText>
<MultilingualText ID="12" CompositionName="Title">
<ObjectList>
<MultilingualTextItem ID="13" CompositionName="Items">
<AttributeList>
<Culture>it-IT</Culture>
<Text>Set manual active</Text>
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="14" CompositionName="Items">
<AttributeList>
<Culture>de-DE</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="15" CompositionName="Items">
<AttributeList>
<Culture>en-US</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="16" CompositionName="Items">
<AttributeList>
<Culture>es-ES</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="17" CompositionName="Items">
<AttributeList>
<Culture>fr-FR</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="18" CompositionName="Items">
<AttributeList>
<Culture>zh-CN</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="19" CompositionName="Items">
<AttributeList>
<Culture>ja-JP</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
</ObjectList>
</MultilingualText>
</ObjectList>
</SW.Blocks.CompileUnit>
<SW.Blocks.CompileUnit ID="1A" CompositionName="CompileUnits">
<AttributeList>
<NetworkSource><StatementList xmlns="http://www.siemens.com/automation/Openness/SW/NetworkSource/StatementList/v4">
<StlStatement UId="24">
<StlToken Text="OPEN_DB" />
<Access Scope="GlobalVariable">
<Symbol>
<Component Name="HMI_Device" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="26">
<StlToken Text="L_DBLG" />
</StlStatement>
<StlStatement UId="27">
<StlToken Text="T" />
<Access Scope="LocalVariable">
<Symbol>
<Component Name="Dim_HMI_Device" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="29">
<StlToken Text="L" />
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>ARef</ConstantType>
<ConstantValue>P#0.0</ConstantValue>
</Constant>
</Access>
</StlStatement>
<StlStatement UId="31">
<StlToken Text="L" />
<Access Scope="LocalVariable">
<Symbol>
<Component Name="Dim_HMI_Device" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="33">
<StlToken Text="SLD" />
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>Int</ConstantType>
<ConstantValue>3</ConstantValue>
</Constant>
</Access>
</StlStatement>
<StlStatement UId="35">
<StlToken Text="ADD_D" />
</StlStatement>
<StlStatement UId="36">
<StlToken Text="T" />
<Access Scope="LocalVariable">
<Symbol>
<Component Name="PDim_HMI_Device" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="38">
<StlToken Text="L" />
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>ARef</ConstantType>
<ConstantValue>P#0.0</ConstantValue>
</Constant>
</Access>
</StlStatement>
<StlStatement UId="40">
<StlToken Text="LAR1_ACCU1" />
</StlStatement>
<StlStatement UId="41">
<LabelDeclaration>
<Label Name="M100" />
</LabelDeclaration>
<StlToken Text="NOP_0" />
</StlStatement>
<StlStatement UId="43">
<StlToken Text="OPEN_DB" />
<Access Scope="GlobalVariable">
<Symbol>
<Component Name="HMI_Device" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="45">
<StlToken Text="A" />
<Access Scope="Address">
<Indirect Width="Bit" Area="DB" Register="AR1" BitOffset="7" />
<LineComment>
<Text> config</Text>
</LineComment>
</Access>
</StlStatement>
<StlStatement UId="48">
<StlToken Text="AN" />
<Access Scope="Address">
<Indirect Width="Bit" Area="DB" Register="AR1" BitOffset="0" />
<LineComment>
<Text> auto</Text>
</LineComment>
</Access>
</StlStatement>
<StlStatement UId="51">
<StlToken Text="S" />
<Access Scope="GlobalVariable">
<Symbol>
<Component Name="HMI_Alarms" />
<Component Name="gH_Message" AccessModifier="Array">
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>DInt</ConstantType>
<ConstantValue>3</ConstantValue>
</Constant>
</Access>
</Component>
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="53">
<StlToken Text="ADDAR1" />
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>ARef</ConstantType>
<ConstantValue>P#2.0</ConstantValue>
</Constant>
</Access>
</StlStatement>
<StlStatement UId="55">
<StlToken Text="TAR1_ACCU1" />
</StlStatement>
<StlStatement UId="56">
<StlToken Text="L" />
<Access Scope="LocalVariable">
<Symbol>
<Component Name="PDim_HMI_Device" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="58">
<StlToken Text="LT_D" />
</StlStatement>
<StlStatement UId="59">
<StlToken Text="JC" />
<Access Scope="Label">
<Label Name="M100" />
</Access>
</StlStatement>
</StatementList></NetworkSource>
<ProgrammingLanguage>STL</ProgrammingLanguage>
</AttributeList>
<ObjectList>
<MultilingualText ID="1B" CompositionName="Comment">
<ObjectList>
<MultilingualTextItem ID="1C" CompositionName="Items">
<AttributeList>
<Culture>it-IT</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="1D" CompositionName="Items">
<AttributeList>
<Culture>de-DE</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="1E" CompositionName="Items">
<AttributeList>
<Culture>en-US</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="1F" CompositionName="Items">
<AttributeList>
<Culture>es-ES</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="20" CompositionName="Items">
<AttributeList>
<Culture>fr-FR</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="21" CompositionName="Items">
<AttributeList>
<Culture>zh-CN</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="22" CompositionName="Items">
<AttributeList>
<Culture>ja-JP</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
</ObjectList>
</MultilingualText>
<MultilingualText ID="23" CompositionName="Title">
<ObjectList>
<MultilingualTextItem ID="24" CompositionName="Items">
<AttributeList>
<Culture>it-IT</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="25" CompositionName="Items">
<AttributeList>
<Culture>de-DE</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="26" CompositionName="Items">
<AttributeList>
<Culture>en-US</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="27" CompositionName="Items">
<AttributeList>
<Culture>es-ES</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="28" CompositionName="Items">
<AttributeList>
<Culture>fr-FR</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="29" CompositionName="Items">
<AttributeList>
<Culture>zh-CN</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="2A" CompositionName="Items">
<AttributeList>
<Culture>ja-JP</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
</ObjectList>
</MultilingualText>
</ObjectList>
</SW.Blocks.CompileUnit>
<SW.Blocks.CompileUnit ID="2B" CompositionName="CompileUnits">
<AttributeList>
<NetworkSource><StatementList xmlns="http://www.siemens.com/automation/Openness/SW/NetworkSource/StatementList/v4">
<StlStatement UId="24">
<LineComment>
<Text> PID</Text>
</LineComment>
<StlToken Text="COMMENT" />
</StlStatement>
<StlStatement UId="26">
<StlToken Text="OPEN_DB" />
<Access Scope="GlobalVariable">
<Symbol>
<Component Name="HMI_PID" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="28">
<StlToken Text="L_DBLG" />
</StlStatement>
<StlStatement UId="29">
<StlToken Text="T" />
<Access Scope="LocalVariable">
<Symbol>
<Component Name="Dim_HMI_PID" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="31">
<StlToken Text="L" />
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>ARef</ConstantType>
<ConstantValue>P#0.0</ConstantValue>
</Constant>
</Access>
</StlStatement>
<StlStatement UId="33">
<StlToken Text="L" />
<Access Scope="LocalVariable">
<Symbol>
<Component Name="Dim_HMI_PID" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="35">
<StlToken Text="SLD" />
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>Int</ConstantType>
<ConstantValue>3</ConstantValue>
</Constant>
</Access>
</StlStatement>
<StlStatement UId="37">
<StlToken Text="ADD_D" />
</StlStatement>
<StlStatement UId="38">
<StlToken Text="T" />
<Access Scope="LocalVariable">
<Symbol>
<Component Name="PDim_HMI_PID" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="40">
<StlToken Text="L" />
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>ARef</ConstantType>
<ConstantValue>P#0.0</ConstantValue>
</Constant>
</Access>
</StlStatement>
<StlStatement UId="42">
<StlToken Text="LAR1_ACCU1" />
</StlStatement>
<StlStatement UId="43">
<LabelDeclaration>
<Label Name="M101" />
</LabelDeclaration>
<StlToken Text="NOP_0" />
</StlStatement>
<StlStatement UId="45">
<StlToken Text="OPEN_DB" />
<Access Scope="GlobalVariable">
<Symbol>
<Component Name="HMI_PID" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="47">
<StlToken Text="A" />
<Access Scope="Address">
<Indirect Width="Bit" Area="DB" Register="AR1" BitOffset="7" />
<LineComment>
<Text> config</Text>
</LineComment>
</Access>
</StlStatement>
<StlStatement UId="50">
<StlToken Text="A_BRACK" />
</StlStatement>
<StlStatement UId="51">
<StlToken Text="A" />
<Access Scope="Address">
<Indirect Width="Bit" Area="DB" Register="AR1" BitOffset="16" />
<LineComment>
<Text> ManOut</Text>
</LineComment>
</Access>
</StlStatement>
<StlStatement UId="54">
<StlToken Text="O" />
<Access Scope="Address">
<Indirect Width="Bit" Area="DB" Register="AR1" BitOffset="24" />
<LineComment>
<Text> LocalSP</Text>
</LineComment>
</Access>
</StlStatement>
<StlStatement UId="57">
<StlToken Text="BRACKET" />
</StlStatement>
<StlStatement UId="58">
<StlToken Text="S" />
<Access Scope="GlobalVariable">
<Symbol>
<Component Name="HMI_Alarms" />
<Component Name="gH_Message" AccessModifier="Array">
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>DInt</ConstantType>
<ConstantValue>3</ConstantValue>
</Constant>
</Access>
</Component>
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="60">
<StlToken Text="ADDAR1" />
<Access Scope="LiteralConstant">
<Constant>
<ConstantType>ARef</ConstantType>
<ConstantValue>P#76.0</ConstantValue>
</Constant>
</Access>
</StlStatement>
<StlStatement UId="62">
<StlToken Text="TAR1_ACCU1" />
</StlStatement>
<StlStatement UId="63">
<StlToken Text="L" />
<Access Scope="LocalVariable">
<Symbol>
<Component Name="PDim_HMI_PID" />
</Symbol>
</Access>
</StlStatement>
<StlStatement UId="65">
<StlToken Text="LT_D" />
</StlStatement>
<StlStatement UId="66">
<StlToken Text="JC" />
<Access Scope="Label">
<Label Name="M101" />
</Access>
</StlStatement>
</StatementList></NetworkSource>
<ProgrammingLanguage>STL</ProgrammingLanguage>
</AttributeList>
<ObjectList>
<MultilingualText ID="2C" CompositionName="Comment">
<ObjectList>
<MultilingualTextItem ID="2D" CompositionName="Items">
<AttributeList>
<Culture>it-IT</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="2E" CompositionName="Items">
<AttributeList>
<Culture>de-DE</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="2F" CompositionName="Items">
<AttributeList>
<Culture>en-US</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="30" CompositionName="Items">
<AttributeList>
<Culture>es-ES</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="31" CompositionName="Items">
<AttributeList>
<Culture>fr-FR</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="32" CompositionName="Items">
<AttributeList>
<Culture>zh-CN</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="33" CompositionName="Items">
<AttributeList>
<Culture>ja-JP</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
</ObjectList>
</MultilingualText>
<MultilingualText ID="34" CompositionName="Title">
<ObjectList>
<MultilingualTextItem ID="35" CompositionName="Items">
<AttributeList>
<Culture>it-IT</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="36" CompositionName="Items">
<AttributeList>
<Culture>de-DE</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="37" CompositionName="Items">
<AttributeList>
<Culture>en-US</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="38" CompositionName="Items">
<AttributeList>
<Culture>es-ES</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="39" CompositionName="Items">
<AttributeList>
<Culture>fr-FR</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="3A" CompositionName="Items">
<AttributeList>
<Culture>zh-CN</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="3B" CompositionName="Items">
<AttributeList>
<Culture>ja-JP</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
</ObjectList>
</MultilingualText>
</ObjectList>
</SW.Blocks.CompileUnit>
<MultilingualText ID="3C" CompositionName="Title">
<ObjectList>
<MultilingualTextItem ID="3D" CompositionName="Items">
<AttributeList>
<Culture>it-IT</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="3E" CompositionName="Items">
<AttributeList>
<Culture>de-DE</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="3F" CompositionName="Items">
<AttributeList>
<Culture>en-US</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="40" CompositionName="Items">
<AttributeList>
<Culture>es-ES</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="41" CompositionName="Items">
<AttributeList>
<Culture>fr-FR</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="42" CompositionName="Items">
<AttributeList>
<Culture>zh-CN</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
<MultilingualTextItem ID="43" CompositionName="Items">
<AttributeList>
<Culture>ja-JP</Culture>
<Text />
</AttributeList>
</MultilingualTextItem>
</ObjectList>
</MultilingualText>
</ObjectList>
</SW.Blocks.FC>
</Document>

View File

@ -1,101 +0,0 @@
{
"block_name": "TestLAD",
"block_number": 2,
"language": "LAD",
"block_comment": "",
"interface": {
"Temp": [
{
"name": "All_Auto_RETVAL",
"datatype": "Int"
},
{
"name": "Reset_SP_Word_RETVAL",
"datatype": "Int"
},
{
"name": "mResetWaterTot",
"datatype": "Bool"
},
{
"name": "mResetSyrupTot",
"datatype": "Bool"
},
{
"name": "mResetCO2Tot",
"datatype": "Bool"
},
{
"name": "mResetProductTot",
"datatype": "Bool"
},
{
"name": "Block_Move_Err",
"datatype": "Int"
},
{
"name": "Dim_HMI_Device",
"datatype": "Int"
},
{
"name": "PDim_HMI_Device",
"datatype": "DWord"
},
{
"name": "Dim_HMI_PID",
"datatype": "Int"
},
{
"name": "PDim_HMI_PID",
"datatype": "DWord"
}
],
"Return": [
{
"name": "Ret_Val",
"datatype": "Void"
}
]
},
"networks": [
{
"id": "9",
"title": "Set manual active",
"comment": "DEVICE",
"language": "STL",
"logic": [
{
"instruction_uid": "UNS_9",
"type": "UNSUPPORTED_LANG",
"scl": "// Network 9 uses unsupported language: STL\n"
}
]
},
{
"id": "1A",
"title": "",
"comment": "",
"language": "STL",
"logic": [
{
"instruction_uid": "UNS_1A",
"type": "UNSUPPORTED_LANG",
"scl": "// Network 1A uses unsupported language: STL\n"
}
]
},
{
"id": "2B",
"title": "",
"comment": "",
"language": "STL",
"logic": [
{
"instruction_uid": "UNS_2B",
"type": "UNSUPPORTED_LANG",
"scl": "// Network 2B uses unsupported language: STL\n"
}
]
}
]
}

View File

@ -1,101 +0,0 @@
{
"block_name": "TestLAD",
"block_number": 2,
"language": "LAD",
"block_comment": "",
"interface": {
"Temp": [
{
"name": "All_Auto_RETVAL",
"datatype": "Int"
},
{
"name": "Reset_SP_Word_RETVAL",
"datatype": "Int"
},
{
"name": "mResetWaterTot",
"datatype": "Bool"
},
{
"name": "mResetSyrupTot",
"datatype": "Bool"
},
{
"name": "mResetCO2Tot",
"datatype": "Bool"
},
{
"name": "mResetProductTot",
"datatype": "Bool"
},
{
"name": "Block_Move_Err",
"datatype": "Int"
},
{
"name": "Dim_HMI_Device",
"datatype": "Int"
},
{
"name": "PDim_HMI_Device",
"datatype": "DWord"
},
{
"name": "Dim_HMI_PID",
"datatype": "Int"
},
{
"name": "PDim_HMI_PID",
"datatype": "DWord"
}
],
"Return": [
{
"name": "Ret_Val",
"datatype": "Void"
}
]
},
"networks": [
{
"id": "9",
"title": "Set manual active",
"comment": "DEVICE",
"language": "STL",
"logic": [
{
"instruction_uid": "UNS_9",
"type": "UNSUPPORTED_LANG",
"scl": "// Network 9 uses unsupported language: STL\n"
}
]
},
{
"id": "1A",
"title": "",
"comment": "",
"language": "STL",
"logic": [
{
"instruction_uid": "UNS_1A",
"type": "UNSUPPORTED_LANG",
"scl": "// Network 1A uses unsupported language: STL\n"
}
]
},
{
"id": "2B",
"title": "",
"comment": "",
"language": "STL",
"logic": [
{
"instruction_uid": "UNS_2B",
"type": "UNSUPPORTED_LANG",
"scl": "// Network 2B uses unsupported language: STL\n"
}
]
}
]
}

View File

@ -1,42 +0,0 @@
// Block Name (Original): TestLAD
// Block Number: 2
// Original Language: LAD
FUNCTION_BLOCK "TestLAD"
{ S7_Optimized_Access := 'TRUE' }
VERSION : 0.1
VAR_RETURN
Ret_Val : Void;
END_VAR
VAR_TEMP
All_Auto_RETVAL : Int;
Reset_SP_Word_RETVAL : Int;
mResetWaterTot : Bool;
mResetSyrupTot : Bool;
mResetCO2Tot : Bool;
mResetProductTot : Bool;
Block_Move_Err : Int;
Dim_HMI_Device : Int;
PDim_HMI_Device : DWord;
Dim_HMI_PID : Int;
PDim_HMI_PID : DWord;
END_VAR
BEGIN
// Network 1: Set manual active (Original Language: STL)
// DEVICE
// Network 9 uses unsupported language: STL
// Network 2: (Original Language: STL)
// Network 1A uses unsupported language: STL
// Network 3: (Original Language: STL)
// Network 2B uses unsupported language: STL
END_FUNCTION_BLOCK

View File

@ -1,284 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="AttributeList" type="AttributeList_T"/>
<xs:complexType name="AttributeList_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="BooleanAttribute"/>
<xs:element ref="IntegerAttribute"/>
<xs:element ref="RealAttribute"/>
<xs:element ref="StringAttribute"/>
<xs:element ref="DateAttribute"/>
</xs:choice>
</xs:complexType>
<xs:element name="Blank" type="Blank_T"/>
<xs:complexType name="Blank_T">
<xs:attribute name="Num" type="xs:positiveInteger" use="optional" default="1"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="BooleanAttribute" type="BooleanAttribute_T">
<xs:annotation>
<xs:documentation>A member attribute with a type restriction of boolean.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="BooleanAttribute_T">
<xs:simpleContent>
<xs:extension base="xs:boolean">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Comment" type="Comment_T">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:element>
<xs:group name="Comment_G">
<xs:annotation>
<xs:documentation>LAD/FBD: Only for Parts</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element ref="Comment"/>
<xs:element ref="LineComment"/>
<xs:element ref="Blank"/>
<xs:element ref="NewLine"/>
</xs:choice>
</xs:sequence>
</xs:group>
<xs:complexType name="Comment_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>For NumBLs in STL. NumBLs is the count of the blank spaces before the actual text in the Comment. This is informative.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="MultiLanguageText" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Inserted" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Denotes if the comment is at the end of the line (using /*/) or inside the line (using (/* */) )</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="DateAttribute" type="DateAttribute_T"/>
<xs:complexType name="DateAttribute_T">
<xs:simpleContent>
<xs:extension base="xs:dateTime">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="GUID_TP">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="IntegerAttribute" type="IntegerAttribute_T">
<xs:annotation>
<xs:documentation>A member attribute with a type restriction of integer.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="IntegerAttribute_T">
<xs:annotation>
<xs:documentation>Not for LAD/FBD.</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="Lang_TP">
<xs:restriction base="xs:string">
<xs:pattern value="[a-zA-Z]{2}-[a-zA-Z]{2}"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="LineComment" type="LineComment_T">
<xs:annotation>
<xs:documentation>Not for LAD/FBD </xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="LineComment_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>For NumBLs in STL. NumBLs is the count of the blank spaces before the actual text in the LineComment. This is informative.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice maxOccurs="unbounded">
<xs:element ref="Text"/>
<xs:element ref="Comment"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Inserted" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Denotes if the comment is at the end of the line (using //) or inside the line (using /* */)</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="NoClosingBracket" type="xs:boolean" default="false"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="MultiLanguageText" type="MultiLanguageText_T"/>
<xs:complexType name="MultiLanguageText_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Lang" type="Lang_TP" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="NewLine" type="NewLine_T"/>
<xs:complexType name="NewLine_T">
<xs:attribute name="Num" type="xs:positiveInteger" use="optional" default="1"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="RealAttribute" type="RealAttribute_T">
<xs:annotation>
<xs:documentation>A member attribute with a type restriction of real.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="RealAttribute_T">
<xs:simpleContent>
<xs:extension base="xs:double">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="SectionName_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="Input"/>
<xs:enumeration value="Return"/>
<xs:enumeration value="Output"/>
<xs:enumeration value="InOut"/>
<xs:enumeration value="Static"/>
<xs:enumeration value="Temp"/>
<xs:enumeration value="Constant"/>
<xs:enumeration value="Base"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SimaticName_TP">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:simpleType name="SimaticType_TE">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="StringAttribute" type="StringAttribute_T">
<xs:annotation>
<xs:documentation>A member attribute with a type restriction of string.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="StringAttribute_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Text" type="Text_T"/>
<xs:complexType name="Text_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Token" type="Token_T"/>
<xs:group name="Token_G">
<xs:choice>
<xs:element ref="Token" minOccurs="0"/>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:choice>
</xs:group>
<xs:complexType name="Token_T">
<xs:sequence minOccurs="0">
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>For NumBLs. NumBLs is the count of the blank spaces at the start.This is informative.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="Text" type="Token_TE" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:simpleType name="Token_TE">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:simpleType name="VersionString_TP">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]+(.[0-9]+){0,3}"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="ViewInfo" type="ViewInfo_T"/>
<xs:complexType name="ViewInfo_T">
<xs:attribute name="Start" type="xs:boolean" use="optional"/>
<xs:attribute name="XPos" type="xs:int" use="optional"/>
<xs:attribute name="YPos" type="xs:int" use="optional"/>
<xs:attribute name="Width" type="xs:int" use="optional"/>
<xs:attribute name="Height" type="xs:int" use="optional"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
</xs:schema>

View File

@ -1,19 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="SnapshotValues" type="SnapshotValues_T"/>
<xs:complexType name="SnapshotValues_T">
<xs:sequence>
<xs:element ref="Value" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Value" type="Value_T"/>
<xs:complexType name="Value_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Path" type="xs:string" use="required"/>
<xs:attribute name="Type" type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:schema>

View File

@ -1,162 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2020. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.Common_v3.xsd"/>
<xs:simpleType name="Accessibility_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Public"/>
<xs:enumeration value="Internal"/>
<xs:enumeration value="Protected"/>
<xs:enumeration value="Private"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="IndexPath_TP">
<xs:restriction base="xs:string">
<xs:pattern value="-?\d+(,-?\d+)*(;(-?\d+(,-?\d+)*))?"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Member" type="Member_T"/>
<xs:complexType name="Member_T">
<xs:sequence>
<xs:element ref="AttributeList" minOccurs="0" maxOccurs="1"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Member"/>
<xs:element ref="Sections"/>
<xs:element ref="StartValue"/>
<xs:element ref="Comment"/>
<xs:element ref="AssignedProDiagFB"/>
<xs:element ref="Subelement"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Datatype" type="SimaticType_TE" use="required"/>
<xs:attribute name="Version" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>The version of the library type to use. Previous to this, the version was written inside the Datatype attribute itself, like "dtl:v1.0". Now, this is written in two separate attributes, to mitigate problems with weird names ("dtl:v1.0" could be a UDT name!).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Remanence" type="Remanence_TE" default="NonRetain"/>
<xs:attribute name="Accessibility" type="Accessibility_TE" default="Public"/>
<xs:attribute name="Informative" type="xs:boolean" default="false"/>
</xs:complexType>
<xs:simpleType name="MemberAttributes_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="CodeReadOnly">
<xs:annotation>
<xs:documentation>Write acces only inside function</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="At">
<xs:annotation>
<xs:documentation>string: Member shares offset with another member in this structure</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SetPoint">
<xs:annotation>
<xs:documentation>boolean: Member can be synchronized with work memory</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="UserVisible">
<xs:annotation>
<xs:documentation>boolean: Editor does not show the member</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="UserReadOnly">
<xs:annotation>
<xs:documentation>boolean: User cannot change member name</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="UserDeletable">
<xs:annotation>
<xs:documentation>boolean: Editor does not allow to delete the member</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="HmiAccessible">
<xs:annotation>
<xs:documentation>boolean: No HMI access, no structure item</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="HmiVisible">
<xs:annotation>
<xs:documentation>boolean: Filter to reduce the number of members shown in the first place</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Offset">
<xs:annotation>
<xs:documentation>integer: </xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="PaddedSize">
<xs:annotation>
<xs:documentation>integer: </xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="HiddenAssignment">
<xs:annotation>
<xs:documentation>boolean: Hide assignement at call if matches with PredefinedAssignment</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="PredefinedAssignment">
<xs:annotation>
<xs:documentation>string: Input for the paramter used when call is placed</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="ReadOnlyAssignment">
<xs:annotation>
<xs:documentation>boolean: The user cannot change the predefined assignement at the call</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="Remanence_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="SetInIDB"/>
<xs:enumeration value="NonRetain"/>
<xs:enumeration value="Retain"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Section" type="Section_T"/>
<xs:complexType name="Section_T">
<xs:sequence>
<xs:element ref="Sections" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>Base Class</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Member" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Name" type="SectionName_TE" use="required"/>
</xs:complexType>
<xs:element name="Sections" type="Sections_T"/>
<xs:complexType name="Sections_T">
<xs:sequence>
<xs:element ref="AttributeList" minOccurs="0" maxOccurs="1"/>
<xs:element ref="Section" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Datatype" type="SimaticType_TE"/>
<xs:attribute name="Version" type="xs:string" use="optional"/>
</xs:complexType>
<xs:element name="StartValue" type="StartValue_T"/>
<xs:element name="AssignedProDiagFB" type="xs:string"/>
<xs:complexType name="StartValue_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="ConstantName" type="SimaticName_TP"/>
<xs:attribute name="IsBulkValue" type="xs:boolean" default="false"/>
<xs:attribute name="Informative" type="xs:boolean" default="false"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Subelement" type="Subelement_T"/>
<xs:complexType name="Subelement_T">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="StartValue"/>
<xs:element ref="Comment"/>
<xs:element ref="AssignedProDiagFB"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Path" type="IndexPath_TP"/>
</xs:complexType>
</xs:schema>

View File

@ -1,593 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.Common_v3.xsd"/>
<xs:element name="AbsoluteOffset" type="AbsoluteOffset_T"/>
<xs:complexType name="AbsoluteOffset_T">
<xs:attribute name="BitOffset" type="xs:int" use="required">
<xs:annotation>
<xs:documentation>Byte * 8 + Bit</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Type" type="xs:string" use="required"/>
</xs:complexType>
<xs:element name="Access" type="Access_T"/>
<xs:group name="Access_G">
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element ref="Access"/>
<xs:element ref="Token"/>
<xs:group ref="Comment_G"/>
</xs:choice>
</xs:sequence>
</xs:group>
<xs:complexType name="Access_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for NumBLs. NumBLs is informative. Not for LAD/FBD.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice>
<xs:element ref="Label"/>
<xs:element ref="Constant"/>
<xs:element ref="CallInfo">
<xs:annotation>
<xs:documentation>call of a user block. Not in Graph ActionList.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Instruction">
<xs:annotation>
<xs:documentation>call of an instruction. Not for LAD/FBD, Graph ActionList.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Indirect">
<xs:annotation>
<xs:documentation>STL specific</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Statusword"/>
<xs:element ref="PredefinedVariable">
<xs:annotation>
<xs:documentation>Only in SCL</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Expression">
<xs:annotation>
<xs:documentation>SCL specific</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Symbol"/>
<xs:element ref="Address">
<xs:annotation>
<xs:documentation>for absolute addresses</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="DataType"/>
<xs:element ref="Reference"/>
</xs:choice>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Scope" use="required">
<xs:simpleType>
<xs:restriction base="Scope_TE"/>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:simpleType name="AccessModifier_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="Array"/>
<xs:enumeration value="Reference"/>
<xs:enumeration value="ReferenceToArray"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Address" type="Address_T"/>
<xs:complexType name="Address_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="BooleanAttribute"/>
</xs:choice>
<xs:attribute name="Area" type="Area_TE" use="required"/>
<xs:attribute name="Type" type="SimaticName_TP" use="optional"/>
<xs:attribute name="BlockNumber" type="xs:int" use="optional">
<xs:annotation>
<xs:documentation>for DB access</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="BitOffset" type="xs:int" use="optional">
<xs:annotation>
<xs:documentation>In general it is Byte * 8 + Bit. But if it is used for addressing a DB we will find the number of the DB here (e.g. "DB12" ->12).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>if true, the import unnoted it</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:simpleType name="Area_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="PeripheryInput"/>
<xs:enumeration value="PeripheryOutput"/>
<xs:enumeration value="Input"/>
<xs:enumeration value="Output"/>
<xs:enumeration value="Memory"/>
<xs:enumeration value="FB"/>
<xs:enumeration value="FC"/>
<xs:enumeration value="DB">
<xs:annotation>
<xs:documentation>partly qualified access with DB register</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DI">
<xs:annotation>
<xs:documentation>partly qualified access with DI register</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Timer"/>
<xs:enumeration value="Counter"/>
<xs:enumeration value="Local">
<xs:annotation>
<xs:documentation>Classic Local Stack</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="BlockType_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="DB"/>
<xs:enumeration value="FB"/>
<xs:enumeration value="FC"/>
<xs:enumeration value="OB"/>
<xs:enumeration value="UDT"/>
<xs:enumeration value="FBT"/>
<xs:enumeration value="FCT"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="CallInfo" type="CallInfo_T"/>
<xs:complexType name="CallInfo_T">
<xs:annotation>
<xs:documentation>Not for LAD/FBD. </xs:documentation>
</xs:annotation>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="IntegerAttribute">
<xs:annotation>
<xs:documentation>for BlockNumber. BlockNumber is informative.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="DateAttribute">
<xs:annotation>
<xs:documentation>for ParameterModifiedTS. ParameterModifiedTS is informative</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Instance"/>
<xs:element ref="NamelessParameter" minOccurs="0" maxOccurs="unbounded"/>
<xs:group ref="Token_G" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Parameter" minOccurs="0" maxOccurs="unbounded"/>
</xs:choice>
<xs:attribute name="Name" type="SimaticName_TP" use="optional"/>
<xs:attribute name="BlockType" type="BlockType_TE" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="Component" type="Component_T"/>
<xs:complexType name="Component_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:group ref="Comment_G" minOccurs="0">
<xs:annotation>
<xs:documentation>SCL</xs:documentation>
</xs:annotation>
</xs:group>
<xs:element ref="Token" minOccurs="0">
<xs:annotation>
<xs:documentation>SCL</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Access">
<xs:annotation>
<xs:documentation>For the indices of an array</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="BooleanAttribute" minOccurs="0"/>
</xs:choice>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="SliceAccessModifier" type="SliceAccessModifier_TP" default="undef"/>
<xs:attribute name="SimpleAccessModifier" type="SimpleAccessModifier_TP" default="None"/>
<xs:attribute name="AccessModifier" type="AccessModifier_TE" default="None">
<xs:annotation>
<xs:documentation>If component has child AccessModifier is Array else AccessModifier is None</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="Constant" type="Constant_T"/>
<xs:complexType name="Constant_T">
<xs:sequence>
<xs:element ref="ConstantType" minOccurs="0"/>
<xs:element ref="ConstantValue" minOccurs="0"/>
<xs:element ref="StringAttribute" minOccurs="0" maxOccurs="2">
<xs:annotation>
<xs:documentation>for Format and FormatFlags. They are informative..</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="BooleanAttribute" minOccurs="0" maxOccurs="2"/>
</xs:sequence>
<xs:attribute name="Name" type="SimaticName_TP"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="ConstantType" type="ConstantType_T"/>
<xs:complexType name="ConstantType_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Informative" type="xs:boolean" use="optional"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="ConstantValue" type="ConstantValue_T"/>
<xs:complexType name="ConstantValue_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Informative" type="xs:boolean" use="optional"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Expression" type="Expression_T"/>
<xs:complexType name="Expression_T">
<xs:sequence maxOccurs="unbounded">
<xs:choice>
<xs:element ref="Access"/>
<xs:element ref="Token"/>
</xs:choice>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="UId" type="xs:int"/>
</xs:complexType>
<xs:element name="DataType" type="DataType_T"/>
<xs:complexType name="DataType_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Informative" type="xs:boolean" use="optional"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="Format_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Real"/>
<xs:enumeration value="Bin"/>
<xs:enumeration value="DecSigned"/>
<xs:enumeration value="DecUnsigned"/>
<xs:enumeration value="Pointer"/>
<xs:enumeration value="CharSequence"/>
<xs:enumeration value="DecSequence"/>
<xs:enumeration value="Hex"/>
<xs:enumeration value="S5Count"/>
<xs:enumeration value="Time"/>
<xs:enumeration value="Date"/>
<xs:enumeration value="TimeOfDay"/>
<xs:enumeration value="S5Time"/>
<xs:enumeration value="Bool"/>
<xs:enumeration value="Oct"/>
<xs:enumeration value="Bcd"/>
<xs:enumeration value="DateAndTime"/>
<xs:enumeration value="String"/>
<xs:enumeration value="Any"/>
<xs:enumeration value="Number"/>
<xs:enumeration value="Char"/>
<xs:enumeration value="HexSequence"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="FormatFlags_TE">
<xs:restriction base="xs:string">
<xs:pattern value="None"/>
<xs:pattern value="((Lower|Format|Size|Under|Exp|TypeQualifier)(,\s*)?)*"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Indirect" type="Indirect_T"/>
<xs:complexType name="Indirect_T">
<xs:sequence minOccurs="0">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Token"/>
<xs:group ref="Comment_G"/>
</xs:choice>
<xs:element ref="Access" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Width" type="Width_TE" use="required"/>
<xs:attribute name="Area" type="Area_TE" use="optional"/>
<xs:attribute name="Register" type="Register_TE" use="optional"/>
<xs:attribute name="BitOffset" use="optional"/>
</xs:complexType>
<xs:element name="Instance" type="Instance_T"/>
<xs:complexType name="Instance_T">
<xs:sequence maxOccurs="unbounded">
<xs:choice>
<xs:element ref="Component"/>
<xs:element ref="AbsoluteOffset"/>
<xs:element ref="Token">
<xs:annotation>
<xs:documentation>the DOT; only if separated. Not in Graph ActionList, not in LAD/FBD.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Address"/>
</xs:choice>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="UId" type="xs:int">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Scope" type="Scope_TE" use="required"/>
</xs:complexType>
<xs:element name="Instruction" type="Instruction_T"/>
<xs:complexType name="Instruction_T">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:group ref="Token_G"/>
<xs:element ref="TemplateValue"/>
<xs:element ref="Instance"/>
<xs:element ref="NamelessParameter" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Parameter" minOccurs="0" maxOccurs="unbounded"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Name" use="optional">
<xs:simpleType>
<xs:restriction base="SimaticName_TP">
<xs:minLength value="1"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Version" type="VersionString_TP"/>
<xs:attribute name="Informative" type="xs:boolean" default="false"/>
<xs:attribute name="UId" type="xs:int"/>
</xs:complexType>
<xs:simpleType name="InterfaceFlags_TP">
<xs:restriction base="xs:string">
<xs:pattern value="None"/>
<xs:pattern value="((Mandatory|S7_Visible)(,\s*)?)*"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Label" type="Label_T"/>
<xs:complexType name="Label_T">
<xs:sequence minOccurs="0">
<xs:annotation>
<xs:documentation>SCL only</xs:documentation>
</xs:annotation>
<xs:element ref="BooleanAttribute" minOccurs="0"/>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="Token" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Name" type="SimaticName_TP" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="NamelessParameter" type="NamelessParameter_T"/>
<xs:complexType name="NamelessParameter_T">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="StringAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for InterfaceFlags. InterfaceFlags is informative</xs:documentation>
<xs:documentation>The type of the value should be InterfaceFlags_TP</xs:documentation>
<xs:documentation>The default value is "S7_Visible"</xs:documentation>
</xs:annotation>
</xs:element>
<xs:group ref="Access_G"/>
</xs:sequence>
<xs:attribute name="UId" type="xs:int"/>
</xs:complexType>
<xs:element name="Parameter" type="Parameter_T"/>
<xs:complexType name="Parameter_T">
<xs:sequence minOccurs="0">
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for NumBLs. NumBLs is informative</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="StringAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for InterfaceFlags. InterfaceFlags is informative</xs:documentation>
<xs:documentation>The type of the value should be InterfaceFlags_TP</xs:documentation>
<xs:documentation>The default value is "S7_Visible"</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="BooleanAttribute" minOccurs="0" maxOccurs="unbounded"/>
<xs:group ref="Access_G" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Name" type="SimaticName_TP" use="required"/>
<xs:attribute name="Section" type="SectionName_TE" use="optional"/>
<xs:attribute name="Type" type="SimaticType_TE"/>
<xs:attribute name="TemplateReference" type="xs:string"/>
<xs:attribute name="Informative" type="xs:boolean" default="false"/>
<xs:attribute name="UId" type="xs:int"/>
</xs:complexType>
<xs:element name="PredefinedVariable" type="PredefinedVariable_T"/>
<xs:complexType name="PredefinedVariable_T">
<xs:attribute name="Name" type="PredefinedVariable_TE" use="required"/>
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:complexType>
<xs:simpleType name="PredefinedVariable_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="ENO"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Reference" type="Reference_T"/>
<xs:complexType name="Reference_T">
<xs:sequence>
<xs:sequence minOccurs="0">
<xs:annotation>
<xs:documentation>SCL</xs:documentation>
</xs:annotation>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="Token"/>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:element ref="Access"/>
<xs:sequence minOccurs="0">
<xs:annotation>
<xs:documentation>SCL</xs:documentation>
</xs:annotation>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="Token"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="Register_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="AR1"/>
<xs:enumeration value="AR2"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="Scope_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Undef">
<xs:annotation>
<xs:documentation>Symbols we do not know what they are</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="GlobalConstant"/>
<xs:enumeration value="LocalConstant"/>
<xs:enumeration value="GlobalVariable"/>
<xs:enumeration value="LocalVariable"/>
<xs:enumeration value="Instruction"/>
<xs:enumeration value="Label"/>
<xs:enumeration value="TypedConstant"/>
<xs:enumeration value="AddressConstant"/>
<xs:enumeration value="LiteralConstant"/>
<xs:enumeration value="AlarmConstant"/>
<xs:enumeration value="Address"/>
<xs:enumeration value="Statusword"/>
<xs:enumeration value="Expression"/>
<xs:enumeration value="Unnamed"/>
<xs:enumeration value="Call"/>
<xs:enumeration value="CallWithType"/>
<xs:enumeration value="UserType"/>
<xs:enumeration value="SystemType"/>
<xs:enumeration value="Reference"/>
<xs:enumeration value="PredefinedVariable"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SimpleAccessModifier_TP">
<xs:restriction base="xs:string">
<xs:pattern value="None|((Periphery|QualityInformation)(,\s*)?)*"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SimpleType_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="undef"/>
<xs:enumeration value="Bool"/>
<xs:enumeration value="Byte"/>
<xs:enumeration value="Char"/>
<xs:enumeration value="Word"/>
<xs:enumeration value="Int"/>
<xs:enumeration value="DWord"/>
<xs:enumeration value="DInt"/>
<xs:enumeration value="Real"/>
<xs:enumeration value="LReal"/>
<xs:enumeration value="Timer"/>
<xs:enumeration value="S5Time"/>
<xs:enumeration value="ARef"/>
<xs:enumeration value="Any"/>
<xs:enumeration value="Time"/>
<xs:enumeration value="S5Count"/>
<xs:enumeration value="Counter"/>
<xs:enumeration value="Block_DB"/>
<xs:enumeration value="Block_FB"/>
<xs:enumeration value="Block_FC"/>
<xs:enumeration value="Block_SFB"/>
<xs:enumeration value="Block_UDT"/>
<xs:enumeration value="Multi_FB"/>
<xs:enumeration value="Multi_SFB"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SliceAccessModifier_TP">
<xs:restriction base="xs:string">
<xs:pattern value="([xbwdXBWD]\d+)|undef"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Statusword" type="Statusword_T">
<xs:annotation>
<xs:documentation>Only for S7-300/400/WinAC</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="Statusword_T">
<xs:attribute name="Combination" type="Statusword_TE" use="required"/>
</xs:complexType>
<xs:simpleType name="Statusword_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="BR"/>
<xs:enumeration value="OV"/>
<xs:enumeration value="OS"/>
<xs:enumeration value="EQ"/>
<xs:enumeration value="NE"/>
<xs:enumeration value="GT"/>
<xs:enumeration value="LT"/>
<xs:enumeration value="GE"/>
<xs:enumeration value="LE"/>
<xs:enumeration value="UO"/>
<xs:enumeration value="NU"/>
<xs:enumeration value="STW"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Symbol" type="Symbol_T"/>
<xs:complexType name="Symbol_T">
<xs:choice maxOccurs="unbounded">
<xs:element ref="Component"/>
<xs:element ref="Address"/>
<xs:element ref="AbsoluteOffset"/>
<xs:element ref="Token">
<xs:annotation>
<xs:documentation>SCL.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Access"/>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:choice>
<xs:attribute name="UId" type="xs:int">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Scope" type="Scope_TE"/>
</xs:complexType>
<xs:simpleType name="TemplateType_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Cardinality"/>
<xs:enumeration value="Type"/>
<xs:enumeration value="Operation"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="TemplateValue" type="TemplateValue_T"/>
<xs:complexType name="TemplateValue_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Name" type="SimaticName_TP" use="required"/>
<xs:attribute name="Type" type="TemplateType_TE" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="Width_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="Bit"/>
<xs:enumeration value="Byte"/>
<xs:enumeration value="Word"/>
<xs:enumeration value="Offset"/>
<xs:enumeration value="Double"/>
<xs:enumeration value="Pointer"/>
<xs:enumeration value="Long"/>
<xs:enumeration value="Any"/>
<xs:enumeration value="Block"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

View File

@ -1,31 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.Access_v4.xsd"/>
<xs:element name="LabelDeclaration" type="LabelDeclaration_T"/>
<xs:complexType name="LabelDeclaration_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for NumBLs. NumBLs is informative</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Label"/>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:sequence minOccurs="0">
<xs:element ref="Token">
<xs:annotation>
<xs:documentation>the COLON; only if separated</xs:documentation>
</xs:annotation>
</xs:element>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
</xs:sequence>
<xs:attribute name="UId" type="xs:int">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:schema>

View File

@ -1,350 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.Access_v4.xsd"/>
<xs:include schemaLocation="SW.PlcBlocks.LADFBD_v4.xsd"/>
<xs:complexType name="Action_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Access"/>
<xs:element ref="Token"/>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:choice>
<xs:attribute name="Event" type="Event_TE"/>
<xs:attribute name="Interlock" type="xs:boolean"/>
<xs:attribute name="Qualifier" type="Qualifier_TE"/>
</xs:complexType>
<xs:simpleType name="Event_TE">
<xs:restriction base="xs:string">
<xs:enumeration value=""/>
<xs:enumeration value="A1"/>
<xs:enumeration value="L0"/>
<xs:enumeration value="L1"/>
<xs:enumeration value="R1"/>
<xs:enumeration value="S0"/>
<xs:enumeration value="S1"/>
<xs:enumeration value="V0"/>
<xs:enumeration value="V1"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="Qualifier_TE">
<xs:restriction base="xs:string">
<xs:enumeration value=""/>
<xs:enumeration value="CD"/>
<xs:enumeration value="CR"/>
<xs:enumeration value="CS"/>
<xs:enumeration value="CU"/>
<xs:enumeration value="D"/>
<xs:enumeration value="L"/>
<xs:enumeration value="N"/>
<xs:enumeration value="ON"/>
<xs:enumeration value="OFF"/>
<xs:enumeration value="R"/>
<xs:enumeration value="S"/>
<xs:enumeration value="TD"/>
<xs:enumeration value="TF"/>
<xs:enumeration value="TL"/>
<xs:enumeration value="TR"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Actions" type="Actions_T"/>
<xs:complexType name="Actions_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Action"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="AlarmSupportingLanguageModule_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:element ref="AlarmText" minOccurs="0"/>
<xs:element ref="FlgNet"/>
</xs:sequence>
<xs:attribute name="ProgrammingLanguage" type="ProgrammingLanguage_TE" use="required"/>
</xs:complexType>
<xs:element name="AlarmText" type="AlarmText_T"/>
<xs:complexType name="AlarmText_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Temporary change for enable of empty alarm text because of the graph alarm handling reconstruction.</xs:documentation>
</xs:annotation>
<xs:element ref="MultiLanguageText"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Branch_T">
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="Type" type="Branch_TE" use="required"/>
<xs:attribute name="Cardinality" type="xs:int" use="required"/>
</xs:complexType>
<xs:simpleType name="Branch_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="SimBegin"/>
<xs:enumeration value="SimEnd"/>
<xs:enumeration value="AltBegin"/>
<xs:enumeration value="AltEnd"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Branches" type="Branches_T"/>
<xs:complexType name="Branches_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Branch"/>
</xs:sequence>
</xs:complexType>
<xs:element name="BranchRef" type="BranchRef_T"/>
<xs:complexType name="BranchRef_T">
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="In" type="xs:int"/>
<xs:attribute name="Out" type="xs:int"/>
</xs:complexType>
<xs:element name="Connection" type="Connection_T"/>
<xs:complexType name="Connection_T">
<xs:sequence>
<xs:element ref="NodeFrom"/>
<xs:element ref="NodeTo"/>
<xs:element ref="LinkType"/>
</xs:sequence>
</xs:complexType>
<xs:element name="EndConnection"/>
<xs:element name="Graph" type="Graph_T"/>
<xs:complexType name="AlarmsSettings_T">
<xs:sequence>
<xs:element ref="AlarmSupervisionCategories"/>
<xs:element ref="AlarmInterlockCategory"/>
<xs:element ref="AlarmSubcategory1Interlock"/>
<xs:element ref="AlarmSubcategory2Interlock"/>
<xs:element ref="AlarmCategorySupervision"/>
<xs:element ref="AlarmSubcategory1Supervision"/>
<xs:element ref="AlarmSubcategory2Supervision"/>
<xs:element ref="AlarmWarningCategory"/>
<xs:element ref="AlarmSubcategory1Warning"/>
<xs:element ref="AlarmSubcategory2Warning"/>
</xs:sequence>
</xs:complexType>
<xs:element name="AlarmsSettings" type="AlarmsSettings_T"/>
<xs:complexType name="Graph_T">
<xs:sequence>
<xs:element ref="PreOperations"/>
<xs:element ref="Sequence" maxOccurs="unbounded"/>
<xs:element ref="PostOperations"/>
<xs:element ref="AlarmsSettings"/>
</xs:sequence>
</xs:complexType>
<xs:element name="IdentRef" type="IdentRef_T"/>
<xs:complexType name="IdentRef_T">
<xs:sequence>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="ViewInfo" minOccurs="0"/>
</xs:sequence>
<xs:attributeGroup ref="PartAttribute_G"/>
</xs:complexType>
<xs:element name="Interlock" type="AlarmSupportingLanguageModule_T"/>
<xs:element name="Interlocks" type="Interlocks_T"/>
<xs:complexType name="Interlocks_T">
<xs:sequence>
<xs:element ref="Interlock"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="Link_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Direct"/>
<xs:enumeration value="Jump"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="Node_T">
<xs:choice>
<xs:element ref="StepRef"/>
<xs:element ref="TransitionRef"/>
<xs:element ref="BranchRef"/>
<xs:element ref="EndConnection"/>
</xs:choice>
</xs:complexType>
<xs:element name="NodeFrom" type="Node_T"/>
<xs:element name="NodeTo" type="Node_T"/>
<xs:element name="LinkType" type="Link_TE"/>
<xs:element name="PermanentOperation" type="PermanentOperation_T"/>
<xs:complexType name="PermanentOperation_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:element ref="FlgNet" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="ProgrammingLanguage" type="ProgrammingLanguage_TE" use="required"/>
</xs:complexType>
<xs:complexType name="PermanentOperations_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="PermanentOperation" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="PostOperations" type="PermanentOperations_T"/>
<xs:element name="PreOperations" type="PermanentOperations_T"/>
<xs:simpleType name="ProgrammingContext_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Plain"/>
<xs:enumeration value="GraphTransition"/>
<xs:enumeration value="GraphSupervision"/>
<xs:enumeration value="GraphInterlock"/>
<xs:enumeration value="GraphActions"/>
<xs:enumeration value="PreOperation"/>
<xs:enumeration value="PostOperation"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProgrammingLanguage_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="STL"/>
<xs:enumeration value="FBD"/>
<xs:enumeration value="LAD"/>
<xs:enumeration value="FBD_IEC"/>
<xs:enumeration value="LAD_IEC"/>
<xs:enumeration value="GRAPH"/>
<xs:enumeration value="DB"/>
<xs:enumeration value="SDB"/>
<xs:enumeration value="DB_CPU"/>
<xs:enumeration value="FB_IDB"/>
<xs:enumeration value="SFB_IDB"/>
<xs:enumeration value="DT_DB"/>
<xs:enumeration value="SCL"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Sequence" type="Sequence_T"/>
<xs:complexType name="Sequence_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="Steps"/>
<xs:element ref="Transitions"/>
<xs:element ref="Branches"/>
<xs:element ref="Connections"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Step">
<xs:complexType>
<xs:complexContent>
<xs:extension base="Step_T"/>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:complexType name="Step_T">
<xs:sequence>
<xs:element ref="StepName" minOccurs="0"/>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="Actions"/>
<xs:element ref="Supervisions"/>
<xs:element ref="Interlocks"/>
</xs:sequence>
<xs:attribute name="IsMissing" type="xs:boolean" default="false"/>
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="Init" type="xs:boolean" default="false"/>
<xs:attribute name="Name" use="required"/>
<xs:attribute name="MaximumStepTime" type="xs:string" use="optional"/>
<xs:attribute name="WarningTime" type="xs:string" use="optional"/>
</xs:complexType>
<xs:element name="StepRef" type="StepRef_T"/>
<xs:complexType name="StepRef_T">
<xs:attribute name="Number" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Steps" type="Steps_T"/>
<xs:complexType name="Steps_T">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="Step"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Connections" type="Connections_T"/>
<xs:complexType name="Connections_T">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="Connection"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Supervision" type="AlarmSupportingLanguageModule_T"/>
<xs:element name="Supervisions" type="Supervisions_T"/>
<xs:complexType name="Supervisions_T">
<xs:sequence>
<xs:element ref="Supervision"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Title" type="Comment_T"/>
<xs:complexType name="Transition_T">
<xs:sequence>
<xs:element ref="TransitionName" minOccurs="0"/>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="FlgNet"/>
</xs:sequence>
<xs:attribute name="IsMissing" type="xs:boolean" default="false"/>
<xs:attribute name="Name" use="required"/>
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="ProgrammingLanguage" type="ProgrammingLanguage_TE" use="required"/>
</xs:complexType>
<xs:element name="TransitionRef" type="TransitionRef_T"/>
<xs:complexType name="TransitionRef_T">
<xs:attribute name="Number" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Transitions" type="Transitions_T"/>
<xs:complexType name="Transitions_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Transition"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Action" type="Action_T"/>
<xs:element name="Transition" type="Transition_T"/>
<xs:element name="Branch" type="Branch_T"/>
<xs:element name="AlarmSupervisionCategories" type="AlarmSupervisionCategories_T"/>
<xs:complexType name="AlarmSupervisionCategories_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="AlarmSupervisionCategory"/>
</xs:sequence>
</xs:complexType>
<xs:element name="AlarmSupervisionCategory" type="AlarmSupervisionCategory_T"/>
<xs:complexType name="AlarmSupervisionCategory_T">
<xs:sequence>
<xs:element ref="Token" minOccurs="0">
<xs:annotation>
<xs:documentation>Enabler token</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="Id" type="xs:unsignedShort" use="required"/>
<xs:attribute name="DisplayClass" use="required">
<xs:simpleType>
<xs:restriction base="xs:unsignedShort">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="16"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:element name="AlarmInterlockCategory" type="AlarmCategory_T"/>
<xs:element name="AlarmSubcategory1Interlock" type="AlarmSubcategory_T"/>
<xs:element name="AlarmSubcategory2Interlock" type="AlarmSubcategory_T"/>
<xs:element name="AlarmCategorySupervision" type="AlarmCategory_T"/>
<xs:element name="AlarmSubcategory1Supervision" type="AlarmSubcategory_T"/>
<xs:element name="AlarmSubcategory2Supervision" type="AlarmSubcategory_T"/>
<xs:element name="AlarmWarningCategory" type="AlarmCategory_T"/>
<xs:element name="AlarmSubcategory1Warning" type="AlarmSubcategory_T"/>
<xs:element name="AlarmSubcategory2Warning" type="AlarmSubcategory_T"/>
<xs:complexType name="AlarmCategory_T">
<xs:attribute name="Id" type="xs:unsignedShort" use="required"/>
</xs:complexType>
<xs:element name="TransitionName" type="TransitionName_T"/>
<xs:complexType name="TransitionName_T">
<xs:sequence>
<xs:annotation>
<xs:documentation>For translated transiton names</xs:documentation>
</xs:annotation>
<xs:element ref="MultiLanguageText" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="StepName" type="StepName_T"/>
<xs:complexType name="StepName_T">
<xs:sequence>
<xs:annotation>
<xs:documentation>For translated step names</xs:documentation>
</xs:annotation>
<xs:element ref="MultiLanguageText" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="AlarmSubcategory_T">
<xs:attribute name="Id" type="xs:unsignedShort" use="required"/>
</xs:complexType>
</xs:schema>

View File

@ -1,46 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<!-- <xs:include schemaLocation="SW.Common_v3.xsd"/>-->
<xs:element name="SupervisionFB">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="StateStruct">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Number" type="xs:int"/>
<xs:element name="Multiinstance">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="BlockTypeSupervisionNumber" type="xs:int"/>
<xs:element name="BlockInstSupervisionGroups" type="BlockInstSupervisionGroupsType"/>
<xs:element name="BlockInstSupervisionGroup">
<xs:complexType>
<xs:sequence>
<xs:element ref="Multiinstance" minOccurs="0"/>
<xs:element ref="BlockInstSupervision" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="BlockInstSupervision">
<xs:complexType>
<xs:sequence>
<xs:element ref="Number"/>
<xs:element ref="StateStruct"/>
<xs:element ref="BlockTypeSupervisionNumber"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="BlockInstSupervisionGroupsType">
<xs:sequence>
<xs:element ref="BlockInstSupervisionGroup" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

View File

@ -1,150 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.CompileUnitCommon_v4.xsd"/>
<xs:element name="Powerrail" type="Powerrail_T"/>
<xs:complexType name="Powerrail_T"/>
<xs:element name="Openbranch" type="Openbranch_T"/>
<xs:complexType name="Openbranch_T"/>
<xs:element name="OpenCon" type="OpenCon_T"/>
<xs:complexType name="OpenCon_T">
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Call" type="Call_T"/>
<xs:complexType name="Call_T">
<xs:sequence>
<xs:element ref="CallInfo"/>
<xs:group ref="PartSequence_G"/>
</xs:sequence>
<xs:attributeGroup ref="PartAttribute_G"/>
</xs:complexType>
<xs:complexType name="Equation_T">
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
</xs:complexType>
<xs:element name="FlgNet" type="FlgNet_T"/>
<xs:complexType name="FlgNet_T">
<xs:sequence>
<xs:element ref="Labels" minOccurs="0"/>
<xs:element ref="Parts"/>
<xs:element ref="Wires" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="GateName_TE">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="IdentCon" type="IdentCon_T"/>
<xs:complexType name="IdentCon_T">
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Invisible" type="Invisible_T">
<xs:annotation>
<xs:documentation>The invisible pins of this part.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="Invisible_T">
<xs:attribute name="Name" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>The name of the invisible pin.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:element name="Labels" type="Labels_T"/>
<xs:complexType name="Labels_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="LabelDeclaration"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Neg_T">
<xs:attribute name="Name" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>The name of the negated pin.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:element name="Negated" type="Neg_T">
<xs:annotation>
<xs:documentation>The negated pins of this part.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="AutomaticTyped_T">
<xs:attribute name="Name" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>The name of the automatic chosen template parameter. Not for InstructionRef</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:element name="AutomaticTyped" type="AutomaticTyped_T"/>
<xs:element name="Part" type="Part_T"/>
<xs:element name="Equation" type="Equation_T"/>
<xs:complexType name="Part_T">
<xs:sequence>
<xs:choice minOccurs="0">
<xs:element ref="Equation" minOccurs="0">
<xs:annotation>
<xs:documentation>The equation of this part. This is only used for the Calculate box.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Instance" minOccurs="0"/>
</xs:choice>
<xs:group ref="PartSequence_G"/>
</xs:sequence>
<xs:attributeGroup ref="PartAttribute_G"/>
<xs:attribute name="Name" use="required">
<xs:simpleType>
<xs:restriction base="SimaticName_TP">
<xs:minLength value="1"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Version" type="VersionString_TP"/>
<xs:attribute name="DisabledENO" type="xs:boolean" default="false"/>
</xs:complexType>
<xs:attributeGroup name="PartAttribute_G">
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:attributeGroup>
<xs:element name="NameCon" type="NameCon_T"/>
<xs:complexType name="NameCon_T">
<xs:attribute name="UId" type="xs:int" use="required"/>
<xs:attribute name="Name" type="PinName_TE" use="required"/>
</xs:complexType>
<xs:element name="Parts" type="Parts_T"/>
<xs:complexType name="Parts_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Access"/>
<xs:element ref="Part"/>
<xs:element ref="Call"/>
</xs:choice>
</xs:complexType>
<xs:group name="PartSequence_G">
<xs:sequence>
<xs:element ref="TemplateValue" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="AutomaticTyped" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Invisible" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Negated" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Comment" minOccurs="0"/>
</xs:sequence>
</xs:group>
<xs:simpleType name="PinName_TE">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="Wire" type="Wire_T"/>
<xs:complexType name="Wire_T">
<xs:choice maxOccurs="unbounded">
<xs:element ref="Powerrail"/>
<xs:element ref="NameCon"/>
<xs:element ref="IdentCon"/>
<xs:element ref="Openbranch"/>
<xs:element ref="OpenCon"/>
</xs:choice>
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Wires" type="Wires_T"/>
<xs:complexType name="Wires_T">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="Wire"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

View File

@ -1,19 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.Access_v4.xsd"/>
<xs:element name="StructuredText" type="StructuredText_T"/>
<xs:complexType name="StructuredText_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice>
<xs:element ref="Access"/>
<xs:element ref="Token"/>
<xs:element ref="Parameter"/>
<xs:element ref="Text"/>
<xs:group ref="Comment_G"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
</xs:schema>

View File

@ -1,482 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.CompileUnitCommon_v4.xsd"/>
<xs:element name="StlStatement" type="StlStatement_T"/>
<xs:complexType name="StlStatement_T">
<xs:sequence>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="LabelDeclaration" minOccurs="0"/>
<xs:sequence>
<xs:element ref="StlToken">
<xs:annotation>
<xs:documentation>missing for empty lines</xs:documentation>
</xs:annotation>
</xs:element>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:element ref="Access" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="UId" type="xs:int">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:element name="StlToken" type="StlToken_T"/>
<xs:complexType name="StlToken_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for NumBLs. NumBLs is informative</xs:documentation>
</xs:annotation>
</xs:element>
<xs:sequence minOccurs="0">
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="Token">
<xs:annotation>
<xs:documentation>e.g 0 1 for NOP 0, NOP 1; STW for L STW or DILG for L DILG; only if separated by comment</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:sequence>
<xs:attribute name="UId" type="xs:int" use="optional">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Text" type="STL_TE" use="required"/>
<!--<xs:attribute name="NumBLs" type="xs:int" default="0"/>-->
</xs:complexType>
<xs:element name="StatementList" type="StatementList_T"/>
<xs:complexType name="StatementList_T">
<xs:sequence>
<xs:element ref="StlStatement" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="STL_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="A"/>
<xs:enumeration value="AN"/>
<xs:enumeration value="O"/>
<xs:enumeration value="ON"/>
<xs:enumeration value="X"/>
<xs:enumeration value="XN"/>
<xs:enumeration value="S"/>
<xs:enumeration value="R"/>
<xs:enumeration value="Assign"/>
<xs:enumeration value="Rise"/>
<xs:enumeration value="Fall"/>
<xs:enumeration value="L"/>
<xs:enumeration value="T"/>
<xs:enumeration value="LAR1"/>
<xs:enumeration value="LAR2"/>
<xs:enumeration value="TAR1"/>
<xs:enumeration value="TAR2"/>
<xs:enumeration value="Extend">
<xs:annotation>
<xs:documentation>SE, SV</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Free"/>
<xs:enumeration value="LC"/>
<xs:enumeration value="OffDelay">
<xs:annotation>
<xs:documentation>SF, SA</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Retentive">
<xs:annotation>
<xs:documentation>SS</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="OnDelay">
<xs:annotation>
<xs:documentation>SD, SE</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Pulse">
<xs:annotation>
<xs:documentation>SP, SI</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CD"/>
<xs:enumeration value="CU"/>
<xs:enumeration value="CALL"/>
<xs:enumeration value="CC"/>
<xs:enumeration value="UC"/>
<xs:enumeration value="OPEN_DB">
<xs:annotation>
<xs:documentation>AUF</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="OPEN_DI">
<xs:annotation>
<xs:documentation>AUF DI</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="LT_I"/>
<xs:enumeration value="LT_R"/>
<xs:enumeration value="LT_D"/>
<xs:enumeration value="LE_I"/>
<xs:enumeration value="LE_R"/>
<xs:enumeration value="LE_D"/>
<xs:enumeration value="EQ_I"/>
<xs:enumeration value="EQ_R"/>
<xs:enumeration value="EQ_D"/>
<xs:enumeration value="GE_I"/>
<xs:enumeration value="GE_R"/>
<xs:enumeration value="GE_D"/>
<xs:enumeration value="GT_I"/>
<xs:enumeration value="GT_R"/>
<xs:enumeration value="GT_D"/>
<xs:enumeration value="NE_I"/>
<xs:enumeration value="NE_R"/>
<xs:enumeration value="NE_D"/>
<xs:enumeration value="JU">
<xs:annotation>
<xs:documentation>SPA</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JC">
<xs:annotation>
<xs:documentation>SPB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JO">
<xs:annotation>
<xs:documentation>SPO</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JZ">
<xs:annotation>
<xs:documentation>SPZ</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JP">
<xs:annotation>
<xs:documentation>SPP</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JM">
<xs:annotation>
<xs:documentation>SPM</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JN">
<xs:annotation>
<xs:documentation>SPN</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JCN">
<xs:annotation>
<xs:documentation>SPBN</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JCB">
<xs:annotation>
<xs:documentation>SPBB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JNB">
<xs:annotation>
<xs:documentation>SPBNB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JBI">
<xs:annotation>
<xs:documentation>SPBI</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JNBI">
<xs:annotation>
<xs:documentation>SPBNI</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JOS">
<xs:annotation>
<xs:documentation>SPS</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JUN">
<xs:annotation>
<xs:documentation>SPU</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JMZ">
<xs:annotation>
<xs:documentation>SPMZ</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JPZ">
<xs:annotation>
<xs:documentation>SPZ</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="LOOP"/>
<xs:enumeration value="JL"/>
<xs:enumeration value="ADD"/>
<xs:enumeration value="SLD"/>
<xs:enumeration value="SLW"/>
<xs:enumeration value="SRD"/>
<xs:enumeration value="SRW"/>
<xs:enumeration value="SRSD">
<xs:annotation>
<xs:documentation>SSD, SVD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SRSW">
<xs:annotation>
<xs:documentation>SSW, SVW</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="RLD"/>
<xs:enumeration value="RRD"/>
<xs:enumeration value="BLD"/>
<xs:enumeration value="ADDAR1"/>
<xs:enumeration value="ADDAR2"/>
<xs:enumeration value="INC"/>
<xs:enumeration value="DEC"/>
<xs:enumeration value="AW"/>
<xs:enumeration value="OW"/>
<xs:enumeration value="XW"/>
<xs:enumeration value="AD"/>
<xs:enumeration value="OD"/>
<xs:enumeration value="XD"/>
<xs:enumeration value="A_BRACK"/>
<xs:enumeration value="AN_BRACK"/>
<xs:enumeration value="O_BRACK"/>
<xs:enumeration value="ON_BRACK"/>
<xs:enumeration value="X_BRACK"/>
<xs:enumeration value="XN_BRACK"/>
<xs:enumeration value="INV_I">
<xs:annotation>
<xs:documentation>KEW, INV_F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="NEG_I">
<xs:annotation>
<xs:documentation>KZW, NEG_F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="INV_D">
<xs:annotation>
<xs:documentation>KED</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="NEG_D">
<xs:annotation>
<xs:documentation>KZD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="NEG_R">
<xs:annotation>
<xs:documentation>NEG_G, ND</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="ABS_R">
<xs:annotation>
<xs:documentation>ABS_G</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SQRT"/>
<xs:enumeration value="SQR"/>
<xs:enumeration value="LN"/>
<xs:enumeration value="EXP"/>
<xs:enumeration value="SIN"/>
<xs:enumeration value="ASIN"/>
<xs:enumeration value="COS"/>
<xs:enumeration value="ACOS"/>
<xs:enumeration value="TAN"/>
<xs:enumeration value="ATAN"/>
<xs:enumeration value="RLDA"/>
<xs:enumeration value="RRDA"/>
<xs:enumeration value="BTI">
<xs:annotation>
<xs:documentation>DEF</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="ITB">
<xs:annotation>
<xs:documentation>DUF</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="BTD">
<xs:annotation>
<xs:documentation>DED</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DTB">
<xs:annotation>
<xs:documentation>DUD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DTR">
<xs:annotation>
<xs:documentation>FDG</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="RND">
<xs:annotation>
<xs:documentation>GFDN</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="RND_M">
<xs:annotation>
<xs:documentation>GFDM</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="RND_P">
<xs:annotation>
<xs:documentation>GFDP</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="TRUNC"/>
<xs:enumeration value="ITD">
<xs:annotation>
<xs:documentation>FD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CAW">
<xs:annotation>
<xs:documentation>TAW</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CAD">
<xs:annotation>
<xs:documentation>TAD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="TAR1_ACCU1"/>
<xs:enumeration value="TAR2_ACCU1"/>
<xs:enumeration value="ADD_I">
<xs:annotation>
<xs:documentation>+F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SUB_I">
<xs:annotation>
<xs:documentation>-F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MUL_I">
<xs:annotation>
<xs:documentation>xF</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DIV_I">
<xs:annotation>
<xs:documentation>:F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="ADD_D">
<xs:annotation>
<xs:documentation>+D</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SUB_D">
<xs:annotation>
<xs:documentation>-D</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MUL_D">
<xs:annotation>
<xs:documentation>xD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DIV_D">
<xs:annotation>
<xs:documentation>:D</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MOD_D"/>
<xs:enumeration value="L_DBLG"/>
<xs:enumeration value="L_DILG"/>
<xs:enumeration value="L_DBNO"/>
<xs:enumeration value="L_DINO"/>
<xs:enumeration value="ADD_R">
<xs:annotation>
<xs:documentation>+G</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SUB_R">
<xs:annotation>
<xs:documentation>-G</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MUL_R">
<xs:annotation>
<xs:documentation>xG</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DIV_R">
<xs:annotation>
<xs:documentation>:G</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CAC">
<xs:annotation>
<xs:documentation>TAK</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="LEAVE"/>
<xs:enumeration value="PUSH"/>
<xs:enumeration value="POP"/>
<xs:enumeration value="SET"/>
<xs:enumeration value="NEG"/>
<xs:enumeration value="CLR"/>
<xs:enumeration value="BEC">
<xs:annotation>
<xs:documentation>BEB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="BRACKET">
<xs:annotation>
<xs:documentation>)</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SAVE"/>
<xs:enumeration value="NOP_0"/>
<xs:enumeration value="NOP_1"/>
<xs:enumeration value="MCR_BRACK">
<xs:annotation>
<xs:documentation>MCR(</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="BRACK_MCR">
<xs:annotation>
<xs:documentation>MCR)</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MCRA"/>
<xs:enumeration value="MCRD"/>
<xs:enumeration value="ENT"/>
<xs:enumeration value="LAR1_ACCU1"/>
<xs:enumeration value="LAR1_AR2"/>
<xs:enumeration value="LAR2_ACCU1"/>
<xs:enumeration value="TAR1_AR2"/>
<xs:enumeration value="CAR">
<xs:annotation>
<xs:documentation>TAR</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CDB">
<xs:annotation>
<xs:documentation>TDB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="COMMENT"/>
<xs:enumeration value="EMPTY_LINE"/>
<xs:enumeration value="PSEUDO"/>
<xs:enumeration value="MOVE"/>
<xs:enumeration value="MOVE_BLOCK"/>
<xs:enumeration value="BE">
<xs:annotation>
<xs:documentation>BEA</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="BEU"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

View File

@ -1,154 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.Common_v3.xsd"/>
<xs:element name="Type">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Action"/>
<xs:enumeration value="Interlock"/>
<xs:enumeration value="Operand"/>
<xs:enumeration value="Position"/>
<xs:enumeration value="Reaction"/>
<xs:enumeration value="MessageText"/>
<xs:enumeration value="MessageError"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="TriggeringStatus" type="xs:boolean"/>
<xs:element name="SupervisedStatus" type="xs:boolean"/>
<xs:element name="SupervisedOperand">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="SubCategory2Number" type="xs:int"/>
<xs:element name="SubCategory1Number" type="xs:int"/>
<xs:element name="Number" type="xs:int"/>
<xs:element name="DelayOperand">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Conditions">
<xs:complexType>
<xs:sequence>
<xs:element ref="Condition" maxOccurs="3"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ConditionOperand">
<xs:complexType>
<xs:attribute name="Number" use="required">
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Condition">
<xs:complexType>
<xs:sequence>
<xs:element ref="ConditionOperand"/>
<xs:element ref="TriggeringStatus"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="CategoryNumber">
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="8"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="BlockTypeSupervisions">
<xs:complexType>
<xs:complexContent>
<xs:extension base="BlockTypeSupervisionsType"/>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="BlockTypeSupervision">
<xs:complexType>
<xs:sequence>
<xs:element ref="SupervisedOperand"/>
<xs:element ref="SupervisedStatus"/>
<xs:element ref="DelayOperand" minOccurs="0"/>
<xs:element ref="Conditions" minOccurs="0"/>
<xs:element ref="CategoryNumber"/>
<xs:element ref="SubCategory1Number" minOccurs="0"/>
<xs:element ref="SubCategory2Number" minOccurs="0"/>
<xs:element ref="SpecificField" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="Type" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Action"/>
<xs:enumeration value="Interlock"/>
<xs:enumeration value="Operand"/>
<xs:enumeration value="Position"/>
<xs:enumeration value="Reaction"/>
<xs:enumeration value="MessageText"/>
<xs:enumeration value="MessageError"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="AssociatedValues">
<xs:complexType>
<xs:sequence>
<xs:element ref="AssociatedValue" maxOccurs="3"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AssociatedValue">
<xs:complexType>
<xs:sequence>
<xs:element ref="AssociatedValueOperand" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="SpecificFieldText">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element ref="MultiLanguageText"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="SpecificField">
<xs:complexType>
<xs:sequence minOccurs="0">
<xs:element ref="AssociatedValues" minOccurs="0"/>
<xs:element ref="SpecificFieldText" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="BlockTypeSupervisionsType">
<xs:sequence>
<xs:element ref="BlockTypeSupervision" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="AssociatedValueOperand">
<xs:complexType>
<xs:attribute name="Number" use="required">
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

View File

@ -1,132 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/Axis/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Motion/Axis/v1"
elementFormDefault="qualified">
<!-- Root element AdditionalData-->
<xs:element name="AdditionalData" type="tns:AdditionalData_T"/>
<!-- Complex type AdditionalData_T-->
<xs:complexType name="AdditionalData_T">
<xs:annotation>
<xs:documentation>Describes additional data, such as Connections, for Axis and ExternalEncoder TOs.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Connection" type="tns:Connection_T" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="SynchronousAxisMasterValues" type="tns:SynchronousAxisMasterValues_T" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type Connection_T-->
<xs:complexType name="Connection_T">
<xs:annotation>
<xs:documentation>Describes a connection of a TO interface.</xs:documentation>
</xs:annotation>
<xs:attribute name="Interface" type="tns:Interface_TE" use="required">
<xs:annotation>
<xs:documentation>Specifies the Interface of the TO that is connected.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="InputAddress" type="xs:nonNegativeInteger" use="optional">
<xs:annotation>
<xs:documentation>Input bit address.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="OutputAddress" type="xs:nonNegativeInteger" use="optional">
<xs:annotation>
<xs:documentation>Output bit address.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="ConnectOption" type="tns:ConnectOption_TE" use="optional" default="Default">
<xs:annotation>
<xs:documentation>Connect option used when the connection has been created.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SensorIndexInActorTelegram" type="xs:nonNegativeInteger" use="optional">
<xs:annotation>
<xs:documentation>Index of sensor in actor telegram if connected to same telegram.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="PathToDBMember" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Path to a DB member.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="OutputTag" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Name of a connected tag for analog connection.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<!-- Enumeration type Interface_TE-->
<xs:simpleType name="Interface_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Actor"/>
<xs:enumeration value="Sensor"/>
<xs:enumeration value="Sensor[1]"/>
<xs:enumeration value="Sensor[2]"/>
<xs:enumeration value="Sensor[3]"/>
<xs:enumeration value="Sensor[4]"/>
<xs:enumeration value="Torque"/>
<xs:enumeration value="OutputCam"/>
<xs:enumeration value="MeasuringInput"/>
</xs:restriction>
</xs:simpleType>
<!-- Enumeration type ConnectOption_TE-->
<xs:simpleType name="ConnectOption_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Default"/>
<xs:enumeration value="AllowAllModules"/>
</xs:restriction>
</xs:simpleType>
<!-- Complex type SynchronousAxisMasterValues_T-->
<xs:complexType name="SynchronousAxisMasterValues_T">
<xs:annotation>
<xs:documentation>Contains a list of master values for TO_SynchronousAxis.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="SetPointCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a master value TO that is coupled via set points.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="ActualValueCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a master value TO that is coupled via actual values.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="DelayedCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a master value TO that is coupled via delayed values.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="LeadingAxisProxy" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a master value TO of type LeadingAxisProxy.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- Complex type TechnologicalObjectReference_T-->
<xs:complexType name="TechnologicalObjectReference_T">
<xs:annotation>
<xs:documentation>Describes a reference to a Technological Object.</xs:documentation>
</xs:annotation>
<xs:attribute name="Ref" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the name of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Type" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:schema>

View File

@ -1,97 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/Kinematics/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Motion/Kinematics/v1"
elementFormDefault="qualified">
<!-- Root element AdditionalData-->
<xs:element name="AdditionalData" type="tns:AdditionalData_T"/>
<!-- Complex type AdditionalData_T-->
<xs:complexType name="AdditionalData_T">
<xs:annotation>
<xs:documentation>Describes additional data, such as connected axes, for Kinematics TOs.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="KinematicsAxis" type="tns:TechnologicalObjectReferenceWithIndex_T" minOccurs="0" maxOccurs="4"/>
<xs:element name="ConveyorTrackingLeadingValues" type="tns:ConveyorTrackingLeadingValues_T" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type TechnologicalObjectReferenceWithIndex_T-->
<xs:complexType name="TechnologicalObjectReferenceWithIndex_T">
<xs:annotation>
<xs:documentation>Describes a reference to a Technological Object.</xs:documentation>
</xs:annotation>
<xs:attribute name="Index" type="tns:Integer1to4_T" use="required">
<xs:annotation>
<xs:documentation>Specifies the name of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Ref" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the name of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Type" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<!-- Simple type Integer1to4_T-->
<xs:simpleType name="Integer1to4_T">
<xs:restriction base="xs:integer">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="4"/>
</xs:restriction>
</xs:simpleType>
<!-- Complex type ConveyorTrackingLeadingValues_T-->
<xs:complexType name="ConveyorTrackingLeadingValues_T">
<xs:annotation>
<xs:documentation>Contains a list of leading values for conveyor tracking.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="SetPointCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a leading value TO that is coupled via set points.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="ActualValueCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a leading value TO that is coupled via actual values.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="DelayedCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a leading value TO that is coupled via delayed values.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="LeadingAxisProxy" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a leading value TO of type LeadingAxisProxy.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- Complex type TechnologicalObjectReference_T-->
<xs:complexType name="TechnologicalObjectReference_T">
<xs:annotation>
<xs:documentation>Describes a reference to a Technological Object.</xs:documentation>
</xs:annotation>
<xs:attribute name="Ref" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the name of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Type" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:schema>

View File

@ -1,45 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/MeasuringInput/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Motion/MeasuringInput/v1"
elementFormDefault="qualified">
<!-- Root element AdditionalData-->
<xs:element name="AdditionalData" type="tns:AdditionalData_T"/>
<!-- Complex type AdditionalData_T-->
<xs:complexType name="AdditionalData_T">
<xs:annotation>
<xs:documentation>Describes additional data, such as Connections, for MeasuringInput TOs.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Connection" type="tns:Connection_T" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type Connection_T-->
<xs:complexType name="Connection_T">
<xs:annotation>
<xs:documentation>Describes a connection of a TO interface.</xs:documentation>
</xs:annotation>
<xs:attribute name="Interface" type="tns:Interface_TE" use="required">
<xs:annotation>
<xs:documentation>Specifies the Interface of the TO that is connected.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="InputAddress" type="xs:nonNegativeInteger" use="required">
<xs:annotation>
<xs:documentation>Input bit address.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<!-- Enumeration type Interface_TE-->
<xs:simpleType name="Interface_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="MeasuringInput"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

View File

@ -1,49 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/OutputCam/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Motion/OutputCam/v1"
elementFormDefault="qualified">
<!-- Root element AdditionalData-->
<xs:element name="AdditionalData" type="tns:AdditionalData_T"/>
<!-- Complex type AdditionalData_T-->
<xs:complexType name="AdditionalData_T">
<xs:annotation>
<xs:documentation>Describes additional data, such as Connections, for OutputCam and CamTrack TOs.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Connection" type="tns:Connection_T" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type Connection_T-->
<xs:complexType name="Connection_T">
<xs:annotation>
<xs:documentation>Describes a connection of a TO interface.</xs:documentation>
</xs:annotation>
<xs:attribute name="Interface" type="tns:Interface_TE" use="required">
<xs:annotation>
<xs:documentation>Specifies the Interface of the TO that is connected.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="OutputAddress" type="xs:nonNegativeInteger" use="optional">
<xs:annotation>
<xs:documentation>Output bit address.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="OutputTag" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Name of a connected tag.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<!-- Enumeration type Interface_TE-->
<xs:simpleType name="Interface_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="OutputCam"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

View File

@ -1,38 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Parameters/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Parameters/v1"
elementFormDefault="qualified">
<!-- Root element Parameters-->
<xs:element name="Parameters" type="tns:Parameters_T"/>
<!-- Complex type Parameters_T-->
<xs:complexType name="Parameters_T">
<xs:annotation>
<xs:documentation>Describes a list of parameters.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Parameter" type="tns:Parameter_T" minOccurs="0" maxOccurs="unbounded"/>
<xs:any namespace="##other" processContents="strict" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type Parameter_T-->
<xs:complexType name="Parameter_T">
<xs:annotation>
<xs:documentation>Describes a single parameter, having Name and Value. If the Value is missing, the default value of the Parameter is used.</xs:documentation>
</xs:annotation>
<xs:attribute name="Name" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Name of the Parameter</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Value" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Value of the Parameter</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:schema>

View File

@ -1,345 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/Cam/v1"
xmlns:cam="http://www.siemens.com/automation/Openness/SW/Motion/Cam/v1"
elementFormDefault="qualified">
<!-- Global types -->
<xs:simpleType name="ProfileContinuity">
<xs:restriction base="xs:string">
<xs:enumeration value="Position"/>
<xs:enumeration value="Velocity"/>
<xs:enumeration value="Acceleration"/>
<xs:enumeration value="Jerk"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ElementContinuity">
<xs:restriction base="xs:string">
<xs:enumeration value="AsProfile"/>
<xs:enumeration value="Position"/>
<xs:enumeration value="Velocity"/>
<xs:enumeration value="Acceleration"/>
<xs:enumeration value="Jerk"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProfileOptimizationGoal">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="Velocity"/>
<xs:enumeration value ="Acceleration"/>
<xs:enumeration value ="Jerk"/>
<xs:enumeration value ="DynamicMoment"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ElementOptimizationGoal">
<xs:restriction base="xs:string">
<xs:enumeration value="AsProfile"/>
<xs:enumeration value="None"/>
<xs:enumeration value="Velocity"/>
<xs:enumeration value="Acceleration"/>
<xs:enumeration value="Jerk"/>
<xs:enumeration value="DynamicMoment"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ValueMode">
<xs:restriction base="xs:string">
<xs:enumeration value="Relative"/>
<xs:enumeration value="Absolute"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProfileInterpolationMode">
<xs:restriction base="xs:string">
<xs:enumeration value="Linear"/>
<xs:enumeration value="CubicSpline"/>
<xs:enumeration value="BezierSpline"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="BoundaryConditions">
<xs:restriction base="xs:string">
<xs:enumeration value="NoConstraint"/>
<xs:enumeration value="FirstDerivative"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="DefinitionRange">
<xs:attribute name="Start" type="xs:float"/>
<xs:attribute name="End" type="xs:float"/>
</xs:complexType>
<xs:complexType name="TrigonometricValues">
<xs:attribute name="Amplitude" type="xs:float" default="1" />
<!-- two of four are required and at least StartPhase or EndPhase is required -->
<xs:attribute name="StartPhase" type="xs:float" default="0" />
<xs:attribute name="EndPhase" type="xs:float" default="6.2831853071795862" />
<xs:attribute name="Frequency" type="xs:float" default="1" />
<xs:attribute name="PeriodLength" type="xs:float" default="1" />
</xs:complexType>
<xs:complexType name="SegmentBase">
<xs:attribute name="StartX" type="xs:float" use="required" />
<xs:attribute name="EndX" type="xs:float" use="required" />
</xs:complexType>
<xs:simpleType name="PointGroupApproximationMode">
<xs:restriction base="xs:string">
<xs:enumeration value="PointApproximation" />
<xs:enumeration value="SegmentApproximation" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="PointGroupInterpolationMode">
<xs:restriction base="xs:string">
<xs:enumeration value="CubicSpline" />
<xs:enumeration value="BezierSpline" />
</xs:restriction>
</xs:simpleType>
<!-- Due to multiple usage, we place that element type explicitly here -->
<xs:complexType name="PointElementType">
<xs:attribute name="X" type="xs:float" use="required" />
<xs:attribute name="Y" type="xs:float" use="required" />
<xs:attribute name="Velocity" type="xs:float" />
<xs:attribute name="Acceleration" type="xs:float" />
<xs:attribute name="Jerk" type="xs:float" />
</xs:complexType>
<!-- Begin of our actual nodes -->
<xs:element name="ProfileData">
<xs:complexType>
<xs:sequence>
<xs:element name="GeneralConfiguration" minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<!-- Requires start < end validity - default is [0;360] -->
<xs:element name="DesignLeadingRange" type="cam:DefinitionRange" minOccurs="1" maxOccurs="1" />
<!-- Requires start < end validity - default is [-1;1] -->
<xs:element name="DesignFollowingRange" type="cam:DefinitionRange" minOccurs="1" maxOccurs="1" />
</xs:sequence>
<!-- Attributes -->
<xs:attribute name="StandardContinuity" type="cam:ProfileContinuity" default="Acceleration" />
<xs:attribute name="StandardOptimizationGoal" type="cam:ProfileOptimizationGoal" default="None" />
<xs:attribute name="InterpolationMode" type="cam:ProfileInterpolationMode" default="CubicSpline" />
<xs:attribute name="BoundaryConditions" type="cam:BoundaryConditions" default="NoConstraint" />
</xs:complexType>
</xs:element>
<!-- The node of listed elements -->
<xs:element name="Elements" minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Point" type="cam:PointElementType" />
<xs:element name="Line">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<!-- Two out of three are required here -->
<xs:attribute name="StartY" type="xs:float" />
<xs:attribute name="EndY" type="xs:float" />
<xs:attribute name="Gradient" type="xs:float" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="Polynomial">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<xs:sequence>
<!-- With or without trigonometric portion ? If node doesn't exist, we simply use a non-trig. polynomial -->
<!-- 2 out of 4 : startPhase, endPhase, frequency, periodLength -->
<xs:element name="TrigonometricValues" type="cam:TrigonometricValues" minOccurs="0" maxOccurs="1" />
<!-- For V3, one of these nodes is required. -->
<xs:choice>
<xs:element name="Coefficients" >
<xs:complexType>
<xs:attribute name="C0" type="xs:float" default="0" />
<xs:attribute name="C1" type="xs:float" default="0" />
<xs:attribute name="C2" type="xs:float" default="0" />
<xs:attribute name="C3" type="xs:float" default="0" />
<xs:attribute name="C4" type="xs:float" default="0" />
<xs:attribute name="C5" type="xs:float" default="0" />
<xs:attribute name="C6" type="xs:float" default="0" />
</xs:complexType>
</xs:element>
<xs:element name="Constraints" >
<xs:complexType>
<xs:attribute name="LeftValue" type="xs:float" />
<xs:attribute name="RightValue" type="xs:float" />
<xs:attribute name="LeftVelocity" type="xs:float" />
<xs:attribute name="RightVelocity" type="xs:float" />
<xs:attribute name="LeftAcceleration" type="xs:float" />
<xs:attribute name="RightAcceleration" type="xs:float" />
<!-- For V3, only one of these three parameters is allowed and lambda is always assumed to be absolute there. -->
<xs:attribute name="LeftJerk" type="xs:float" />
<xs:attribute name="RightJerk" type="xs:float" />
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="VDITransition">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<!-- The VDI-rules we know so far -->
<!-- If a VDI-rule occurs, the transition is handled as a VDI transition -->
<!-- For V3, lambda is always expected to be absolute -> mode is ignored there. -->
<xs:choice minOccurs="1" maxOccurs="1">
<xs:element name="DoubleHarmonicTransition" />
<xs:element name="InclinedSine">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="Linear" />
<xs:element name="HarmonicCombination">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="ModifiedAccelerationTrapezoid">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="ModifiedSine">
<xs:complexType>
<!-- Choose one of three -->
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="Ca" type="xs:float" />
<xs:attribute name="CaStar" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="Polynomial">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="QuadraticParabola">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="Sine">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="SineLineCombination">
<xs:complexType>
<!-- Both parameters can be used -->
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="C" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
</xs:choice>
<xs:attribute name="LeftContinuity" type="cam:ElementContinuity" default="AsProfile" />
<xs:attribute name="RightContinuity" type="cam:ElementContinuity" default="AsProfile" />
<xs:attribute name="OptimizationGoal" type="cam:ElementOptimizationGoal" default="AsProfile" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="InverseSine">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<xs:attribute name="InterpolationPointCount" type="xs:integer" default="32" />
<xs:attribute name="MaxFollowingValueTolerance" type="xs:float" default="0.01" />
<xs:attribute name="MathStartX" type="xs:float" default="-0.95" />
<xs:attribute name="MathEndX" type="xs:float" default="0.95" />
<xs:attribute name="Minimum" type="xs:float" />
<xs:attribute name="Maximum" type="xs:float" />
<xs:attribute name="Inversed" type="xs:boolean" default="false" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="Sine">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<xs:attribute name="Amplitude" type="xs:float" default="1" />
<!-- two of four are required and at least StartPhase or EndPhase is required -->
<xs:attribute name="StartPhase" type="xs:float" default="0" />
<xs:attribute name="EndPhase" type="xs:float" default="6.2831853071795862" />
<xs:attribute name="Frequency" type="xs:float" default="1" />
<xs:attribute name="PeriodLength" type="xs:float" default="1" />
<!-- Two out of three are required here -->
<xs:attribute name="Inclination" type="xs:float" default="0" />
<xs:attribute name="StartOffset" type="xs:float" default="0" />
<xs:attribute name="EndOffset" type="xs:float" default="0" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="PointGroup">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<!-- Allow points to be sub-elements of the group-->
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Point" type="cam:PointElementType" />
</xs:sequence>
<xs:attribute name="ApproximationDataPoints" type="xs:integer" default="32" />
<xs:attribute name="ApproximationTolerance" type="xs:float" default="0.01" />
<xs:attribute name="LeadingValueMode" type="cam:ValueMode" default="Absolute" />
<xs:attribute name="FollowingValueMode" type="cam:ValueMode" default="Absolute" />
<xs:attribute name="ApproximationMode" type="cam:PointGroupApproximationMode" default="SegmentApproximation" />
<xs:attribute name="InterpolationMode" type="cam:PointGroupInterpolationMode" default="CubicSpline" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

View File

@ -1,87 +0,0 @@
# processors/process_add.py
# -*- coding: utf-8 -*-
import sympy
import traceback
import re # Importar re si se usa para formateo
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed" # Usar el nuevo sufijo
def process_add(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""Genera SCL para Add, simplificando la condición EN."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Add")
current_type = instruction.get("type","")
if current_type.endswith(SCL_SUFFIX) or "_error" in current_type:
return False
# Obtener EN (SymPy), IN1, IN2 (SymPy o Constante/String)
en_input = instruction["inputs"].get("en")
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true
op1_sympy_or_const = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager)
op2_sympy_or_const = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager)
# Obtener destino SCL
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=True)
# Verificar dependencias
if sympy_en_expr is None or op1_sympy_or_const is None or op2_sympy_or_const is None or target_scl_name is None:
# print(f"DEBUG Add {instr_uid}: Dependency not ready")
return False
# Convertir operandos SymPy/Constante a SCL strings
op1_scl = sympy_expr_to_scl(op1_sympy_or_const, symbol_manager)
op2_scl = sympy_expr_to_scl(op2_sympy_or_const, symbol_manager)
# Añadir paréntesis si contienen operadores (más seguro para SCL)
op1_scl_formatted = f"({op1_scl})" if re.search(r'[+\-*/ ]', op1_scl) else op1_scl
op2_scl_formatted = f"({op2_scl})" if re.search(r'[+\-*/ ]', op2_scl) else op2_scl
# Generar SCL Core
scl_core = f"{target_scl_name} := {op1_scl_formatted} + {op2_scl_formatted};"
# Aplicar Condición EN (Simplificando EN)
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
# Evitar IF TRUE THEN...
if en_condition_scl == "TRUE":
scl_final = scl_core
# Evitar IF FALSE THEN...
elif en_condition_scl == "FALSE":
scl_final = f"// {instr_type_original} {instr_uid} condition simplified to FALSE."
else:
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# Actualizar instrucción y mapa
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (nombre SCL del destino) y ENO (expresión SymPy)
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = target_scl_name # Guardar nombre del destino (string)
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador Add."""
# Asegurar que la clave coincida con el tipo en JSON ('add')
return {'type_name': 'add', 'processor_func': process_add, 'priority': 4}

View File

@ -1,118 +0,0 @@
# processors/process_blkmov.py
# -*- coding: utf-8 -*-
import sympy
import traceback
import re
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed" # Usar el nuevo sufijo
def process_blkmov(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""
Genera SCL usando BLKMOV directamente como nombre de función,
simplificando la condición EN.
ADVERTENCIA: Sintaxis BLKMOV probablemente no compile en TIA estándar.
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "BlkMov") # Asegurar que el tipo base sea correcto
current_type = instruction.get("type","")
if current_type.endswith(SCL_SUFFIX) or "_error" in current_type:
return False
# --- Obtener Entradas ---
en_input = instruction["inputs"].get("en")
# Obtener EN como expresión SymPy
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true
srcblk_info = instruction["inputs"].get("SRCBLK")
# Obtener nombre RAW de SRCBLK (como se hacía antes, si es necesario para BLKMOV)
# Este nombre NO pasa por SymPy, se usa directo en el string SCL final
raw_srcblk_name = srcblk_info.get("name") if srcblk_info else None
# Verificar dependencias (EN debe estar resuelto, SRCBLK debe tener nombre)
if sympy_en_expr is None:
# print(f"DEBUG BlkMov {instr_uid}: EN dependency not ready")
return False
if raw_srcblk_name is None:
print(f"Error: BLKMOV {instr_uid} sin información válida para SRCBLK.")
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin SRCBLK válido."
instruction["type"] = instr_type_original + "_error"
return True
# --- Obtener Destinos (Salidas) ---
# RET_VAL (Obtener nombre SCL formateado)
retval_target_scl = get_target_scl_name(instruction, "RET_VAL", network_id, default_to_temp=True)
if retval_target_scl is None: # get_target_scl_name ya imprime error si falla y default_to_temp=True
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} no pudo generar destino RET_VAL"
instruction["type"] = instr_type_original + "_error"
return True
# DSTBLK (Obtener nombre RAW como antes, si se necesita)
raw_dstblk_name = None
dstblk_output_list = instruction.get("outputs", {}).get("DSTBLK", [])
if dstblk_output_list and isinstance(dstblk_output_list, list) and len(dstblk_output_list) == 1:
dest_access = dstblk_output_list[0]
if dest_access.get("type") == "variable":
raw_dstblk_name = dest_access.get("name")
# Manejar error si no se encuentra DSTBLK
if raw_dstblk_name is None:
print(f"Error: No se encontró un destino único y válido para DSTBLK en BLKMOV {instr_uid}.")
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin destino DSTBLK válido."
instruction["type"] = instr_type_original + "_error"
return True
# --- Formateo especial (mantener nombres raw si es necesario para BLKMOV) ---
# Estos nombres van directo al string SCL, no necesitan pasar por SymPy
srcblk_final_str = raw_srcblk_name # Asumiendo que ya viene con comillas si las necesita
dstblk_final_str = raw_dstblk_name # Asumiendo que ya viene con comillas si las necesita
# --- Generar SCL Core (Usando la sintaxis no estándar BLKMOV) ---
scl_core = (
f"{retval_target_scl} := BLKMOV(SRCBLK := {srcblk_final_str}, "
f"DSTBLK => {dstblk_final_str}); " # Usar => para Out/InOut
f"// ADVERTENCIA: BLKMOV usado directamente, probablemente no compile!"
)
# --- Aplicar Condición EN (Simplificando EN) ---
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
# Evitar IF TRUE/FALSE THEN...
if en_condition_scl == "TRUE":
scl_final = scl_core
elif en_condition_scl == "FALSE":
scl_final = f"// {instr_type_original} {instr_uid} condition simplified to FALSE."
else:
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# --- Actualizar Instrucción y Mapa SymPy ---
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar ENO (expresión SymPy)
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr
# Propagar el valor de retorno (nombre SCL string del destino de RET_VAL)
map_key_ret_val = (network_id, instr_uid, "RET_VAL")
sympy_map[map_key_ret_val] = retval_target_scl
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador BLKMOV."""
# Asegurarse que el type_name coincida con el JSON ('blkmov' parece probable)
return {'type_name': 'blkmov', 'processor_func': process_blkmov, 'priority': 6}

View File

@ -1,131 +0,0 @@
# processors/process_call.py
# -*- coding: utf-8 -*-
import sympy
import traceback
# Asumiendo que estas funciones ahora existen y están adaptadas
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager # Necesitamos pasar el symbol_manager
# Definir sufijo globalmente o importar
SCL_SUFFIX = "_sympy_processed"
def process_call(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # Tipo antes de añadir sufijo
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
block_name = instruction.get("block_name", f"UnknownCall_{instr_uid}")
block_type = instruction.get("block_type") # FC, FB
instance_db = instruction.get("instance_db") # Nombre del DB de instancia (para FB)
# Formatear nombres SCL (para la llamada final)
block_name_scl = format_variable_name(block_name)
instance_db_scl = format_variable_name(instance_db) if instance_db else None
# --- Manejo de EN ---
en_input = instruction["inputs"].get("en")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true
if sympy_en_expr is None:
# print(f"DEBUG Call {instr_uid}: EN dependency not ready.")
return False # Dependencia EN no resuelta
# --- Procesar Parámetros de Entrada ---
scl_call_params = []
processed_inputs = {"en"}
dependencies_resolved = True
# Ordenar para consistencia
input_pin_names = sorted(instruction.get("inputs", {}).keys())
for pin_name in input_pin_names:
if pin_name not in processed_inputs:
source_info = instruction["inputs"][pin_name]
# Obtener la representación de la fuente (puede ser SymPy o Constante/String)
source_sympy_or_const = get_sympy_representation(source_info, network_id, sympy_map, symbol_manager)
if source_sympy_or_const is None:
# print(f"DEBUG Call {instr_uid}: Input param '{pin_name}' dependency not ready.")
dependencies_resolved = False
break # Salir si una dependencia no está lista
# Convertir la expresión/constante a SCL para la llamada
# Simplificar ANTES de convertir? Probablemente no necesario para parámetros de entrada
# a menos que queramos optimizar el valor pasado. Por ahora, convertir directo.
param_scl_value = sympy_expr_to_scl(source_sympy_or_const, symbol_manager)
# El nombre del pin SÍ necesita formateo
pin_name_scl = format_variable_name(pin_name)
scl_call_params.append(f"{pin_name_scl} := {param_scl_value}")
processed_inputs.add(pin_name)
if not dependencies_resolved:
return False
# --- Construcción de la Llamada SCL (similar a antes) ---
scl_call_body = ""
param_string = ", ".join(scl_call_params)
if block_type == "FB":
if not instance_db_scl:
print(f"Error: Call FB '{block_name_scl}' (UID {instr_uid}) sin instancia.")
instruction["scl"] = f"// ERROR: FB Call {block_name_scl} sin instancia"
instruction["type"] = f"Call_FB_error"
return True
scl_call_body = f"{instance_db_scl}({param_string});"
elif block_type == "FC":
scl_call_body = f"{block_name_scl}({param_string});"
else:
print(f"Advertencia: Tipo de bloque no soportado para Call UID {instr_uid}: {block_type}")
scl_call_body = f"// ERROR: Call a bloque tipo '{block_type}' no soportado: {block_name_scl}"
instruction["type"] = f"Call_{block_type}_error" # Marcar como error
# --- Aplicar Condición EN (usando la expresión SymPy EN) ---
scl_final = ""
if sympy_en_expr != sympy.true:
# Simplificar la condición EN ANTES de convertirla a SCL
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for Call {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_call = "\n".join([f" {line}" for line in scl_call_body.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_call}\nEND_IF;"
else:
scl_final = scl_call_body
# --- Actualizar Instrucción y Mapa SymPy ---
instruction["scl"] = scl_final # Guardar el SCL final generado
instruction["type"] = (f"Call_{block_type}{SCL_SUFFIX}" if "_error" not in instruction["type"] else instruction["type"])
# Actualizar sympy_map con el estado ENO (es la expresión SymPy de EN)
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO
# Propagar valores de salida (requiere info de interfaz o heurística)
# Si se sabe que hay una salida 'MyOutput', se podría añadir su SCL al mapa
# Ejemplo MUY simplificado:
# for pin_name, dest_list in instruction.get("outputs", {}).items():
# if pin_name != 'eno' and dest_list: # Asumir que hay un destino
# map_key_out = (network_id, instr_uid, pin_name)
# if block_type == "FB" and instance_db_scl:
# sympy_map[map_key_out] = f"{instance_db_scl}.{format_variable_name(pin_name)}" # Guardar el *string* de acceso SCL
# # Para FCs es más complejo, necesitaría asignación explícita a temp
# # else: # FC output -> necesita temp var
# # temp_var = generate_temp_var_name(...)
# # sympy_map[map_key_out] = temp_var
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para las llamadas a FC y FB."""
return [
{'type_name': 'call_fc', 'processor_func': process_call, 'priority': 6},
{'type_name': 'call_fb', 'processor_func': process_call, 'priority': 6}
]

View File

@ -1,82 +0,0 @@
# processors/process_coil.py
import sympy
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_coil(instruction, network_id, sympy_map, symbol_manager, data):
"""Genera la asignación SCL para Coil, simplificando la entrada SymPy."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Coil")
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Get input expression from SymPy map
coil_input_info = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(coil_input_info, network_id, sympy_map, symbol_manager)
# Get target variable SCL name
target_scl_name = get_target_scl_name(instruction, "operand", network_id, default_to_temp=False) # Coil must have explicit target
# Check dependencies
if sympy_expr_in is None:
# print(f"DEBUG Coil {instr_uid}: Input dependency not ready.")
return False
if target_scl_name is None:
print(f"Error: Coil {instr_uid} operando no es variable o falta info.")
instruction["scl"] = f"// ERROR: Coil {instr_uid} operando no es variable."
instruction["type"] = instr_type_original + "_error"
return True # Processed with error
# *** Perform Simplification ***
try:
#simplified_expr = sympy.simplify_logic(sympy_expr_in, force=False)
#simplified_expr = sympy_expr_in
simplified_expr = sympy.logic.boolalg.to_dnf(sympy_expr_in, simplify=True)
except Exception as e:
print(f"Error during SymPy simplification for Coil {instr_uid}: {e}")
simplified_expr = sympy_expr_in # Fallback to original expression
# *** Convert simplified expression back to SCL string ***
condition_scl = sympy_expr_to_scl(simplified_expr, symbol_manager)
# Generate the final SCL assignment
scl_assignment = f"{target_scl_name} := {condition_scl};"
scl_final = scl_assignment
# --- Handle Edge Detector Memory Update (Logic similar to before) ---
# Check if input comes from PBox/NBox and append memory update
mem_update_scl_combined = None
if isinstance(coil_input_info, dict) and coil_input_info.get("type") == "connection":
source_uid = coil_input_info.get("source_instruction_uid")
source_pin = coil_input_info.get("source_pin")
source_instruction = None
network_logic = next((net["logic"] for net in data["networks"] if net["id"] == network_id), [])
for instr in network_logic:
if instr.get("instruction_uid") == source_uid:
source_instruction = instr
break
if source_instruction:
# Check for the original type before suffix was added
orig_source_type = source_instruction.get("type", "").replace(SCL_SUFFIX, '').replace('_error', '')
if orig_source_type in ["PBox", "NBox"] and '_edge_mem_update_scl' in source_instruction:
mem_update_scl_combined = source_instruction.get('_edge_mem_update_scl')
if mem_update_scl_combined:
scl_final = f"{scl_assignment}\n{mem_update_scl_combined}"
# Clear the source SCL?
source_instruction['scl'] = f"// Edge Logic handled by Coil {instr_uid}"
# Update instruction
instruction["scl"] = scl_final
instruction["type"] = instr_type_original + SCL_SUFFIX
# Coil typically doesn't output to scl_map
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador Coil."""
return {'type_name': 'coil', 'processor_func': process_coil, 'priority': 3}

View File

@ -1,87 +0,0 @@
# processors/process_comparison.py
# -*- coding: utf-8 -*-
import sympy
import traceback
from .processor_utils import get_sympy_representation, format_variable_name # No necesita sympy_expr_to_scl aquí
from .symbol_manager import SymbolManager # Necesita acceso al manager
SCL_SUFFIX = "_sympy_processed"
def process_comparison(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""
Genera la expresión SymPy para Comparadores (GT, LT, GE, LE, NE).
El resultado se propaga por sympy_map['out'].
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # GT, LT, GE, LE, NE
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Mapa de tipos a funciones/clases SymPy Relational
# Nota: Asegúrate de que los tipos coincidan (ej. si son números o booleanos)
op_map = {
"GT": sympy.Gt, # Greater Than >
"LT": sympy.Lt, # Less Than <
"GE": sympy.Ge, # Greater or Equal >=
"LE": sympy.Le, # Less or Equal <=
"NE": sympy.Ne # Not Equal <> (sympy.Ne maneja esto)
}
sympy_relation_func = op_map.get(instr_type_original.upper())
if not sympy_relation_func:
instruction["scl"] = f"// ERROR: Tipo de comparación no soportado para SymPy: {instr_type_original}"
instruction["type"] = instr_type_original + "_error"
return True
# Obtener operandos como expresiones SymPy o constantes/strings
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
op1_sympy = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager)
op2_sympy = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager)
# Obtener 'pre' (RLO anterior) como expresión SymPy
pre_input = instruction["inputs"].get("pre") # Asumiendo que 'pre' es la entrada RLO
sympy_pre_rlo = get_sympy_representation(pre_input, network_id, sympy_map, symbol_manager) if pre_input else sympy.true
# Verificar dependencias
if op1_sympy is None or op2_sympy is None or sympy_pre_rlo is None:
# print(f"DEBUG Comparison {instr_uid}: Dependency not ready")
return False
# Crear la expresión de comparación SymPy
try:
# Convertir constantes string a número si es posible (Sympy puede necesitarlo)
# Esto es heurístico y puede fallar. Mejor si los tipos son conocidos.
op1_eval = sympy.sympify(op1_sympy) if isinstance(op1_sympy, str) else op1_sympy
op2_eval = sympy.sympify(op2_sympy) if isinstance(op2_sympy, str) else op2_sympy
comparison_expr = sympy_relation_func(op1_eval, op2_eval)
except (SyntaxError, TypeError, ValueError) as e:
print(f"Error creating SymPy comparison for {instr_uid}: {e}")
instruction["scl"] = f"// ERROR creando expr SymPy Comparison {instr_uid}: {e}"
instruction["type"] = instr_type_original + "_error"
return True
# Guardar resultado en el mapa para 'out' (es una expresión booleana SymPy)
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = comparison_expr
# Guardar el RLO de entrada ('pre') como ENO en el mapa SymPy
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_pre_rlo
# Marcar como procesado, SCL principal es solo comentario
instruction["scl"] = f"// SymPy Comparison {instr_type_original}: {comparison_expr}" # Comentario opcional
instruction["type"] = instr_type_original + SCL_SUFFIX
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para los comparadores (excepto EQ, que debe ser similar)."""
return [
{'type_name': 'gt', 'processor_func': process_comparison, 'priority': 2},
{'type_name': 'lt', 'processor_func': process_comparison, 'priority': 2},
{'type_name': 'ge', 'processor_func': process_comparison, 'priority': 2},
{'type_name': 'le', 'processor_func': process_comparison, 'priority': 2},
{'type_name': 'ne', 'processor_func': process_comparison, 'priority': 2}
# Asegúrate de tener también un procesador para 'eq' usando sympy.Eq
]

View File

@ -1,60 +0,0 @@
# processors/process_contact.py
import sympy
from .processor_utils import get_sympy_representation, format_variable_name # Use new util
from .symbol_manager import SymbolManager, extract_plc_variable_name # Need symbol manager access
# Define SCL_SUFFIX or import if needed globally
SCL_SUFFIX = "_sympy_processed" # Indicate processing type
def process_contact(instruction, network_id, sympy_map, symbol_manager, data): # Pass symbol_manager
"""Genera la expresión SymPy para Contact (normal o negado)."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Contact")
# Check if already processed with the new method
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
is_negated = instruction.get("negated_pins", {}).get("operand", False)
# Get incoming SymPy expression (RLO)
in_input = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(in_input, network_id, sympy_map, symbol_manager)
# Get operand SymPy Symbol
operand_info = instruction["inputs"].get("operand")
operand_plc_name = extract_plc_variable_name(operand_info)
sympy_symbol_operand = symbol_manager.get_symbol(operand_plc_name) if operand_plc_name else None
# Check dependencies
if sympy_expr_in is None or sympy_symbol_operand is None:
# print(f"DEBUG Contact {instr_uid}: Dependency not ready (In: {sympy_expr_in is not None}, Op: {sympy_symbol_operand is not None})")
return False # Dependencies not ready
# Apply negation using SymPy
current_term = sympy.Not(sympy_symbol_operand) if is_negated else sympy_symbol_operand
# Combine with previous RLO using SymPy
# Simplify common cases: TRUE AND X -> X
if sympy_expr_in == sympy.true:
sympy_expr_out = current_term
else:
# Could add FALSE AND X -> FALSE optimization here too
sympy_expr_out = sympy.And(sympy_expr_in, current_term)
# Store the resulting SymPy expression object in the map
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = sympy_expr_out
# Mark instruction as processed (SCL field is now less relevant here)
instruction["scl"] = f"// SymPy Contact: {sympy_expr_out}" # Optional debug comment
instruction["type"] = instr_type_original + SCL_SUFFIX # Use the new suffix
# Contact doesn't usually have ENO, it modifies the RLO ('out')
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador Contact."""
# Ensure 'data' argument is added if needed by the processor function signature change
return {'type_name': 'contact', 'processor_func': process_contact, 'priority': 1}

View File

@ -1,90 +0,0 @@
# processors/process_convert.py
# -*- coding: utf-8 -*-
import sympy
import traceback
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_convert(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""Genera SCL para Convert, tratando la conversión como una asignación."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Convert")
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Obtener EN y IN
en_input = instruction["inputs"].get("en")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true
in_info = instruction["inputs"].get("in")
sympy_or_const_in = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager)
# Obtener destino SCL
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=True)
# Verificar dependencias
if sympy_en_expr is None or sympy_or_const_in is None or target_scl_name is None:
return False
# Convertir la entrada (SymPy o Constante) a SCL
# La simplificación aquí no suele aplicar a la conversión en sí,
# pero sí podría aplicar a la condición EN.
input_scl = sympy_expr_to_scl(sympy_or_const_in, symbol_manager)
# Determinar el tipo de destino (esto sigue siendo un desafío sin info completa)
# Usaremos funciones de conversión SCL explícitas si podemos inferirlas.
target_type_hint = instruction.get("template_values", {}).get("destType", "").upper() # Ejemplo
source_type_hint = "" # Necesitaríamos info del tipo de origen
conversion_func_name = None
# Heurística MUY básica (necesita mejorar con info de tipos real)
if target_type_hint and source_type_hint and target_type_hint != source_type_hint:
conversion_func_name = f"{source_type_hint}_TO_{target_type_hint}"
# Generar SCL Core
if conversion_func_name:
# Usar función explícita si la inferimos
scl_core = f"{target_scl_name} := {conversion_func_name}({input_scl});"
else:
# Asignación directa (MOVE implícito) si no hay conversión clara
# ADVERTENCIA: Esto puede causar errores de tipo en el PLC si los tipos no coinciden.
scl_core = f"{target_scl_name} := {input_scl};"
if target_type_hint: # Añadir comentario si al menos conocemos el destino
scl_core += f" // TODO: Verify implicit conversion to {target_type_hint}"
# Aplicar Condición EN (Simplificando EN)
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for Convert {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# Actualizar instrucción y mapa
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (el contenido del destino) y ENO
map_key_out = (network_id, instr_uid, "out")
# Guardar el *nombre* SCL del destino en el mapa, ya que contiene el valor
# O podríamos crear un símbolo SymPy para ello si fuera necesario aguas abajo? Por ahora, string.
sympy_map[map_key_out] = target_scl_name
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador Convert."""
return {'type_name': 'convert', 'processor_func': process_convert, 'priority': 4}

View File

@ -1,110 +0,0 @@
# processors/process_counter.py
# -*- coding: utf-8 -*-
import sympy
import traceback
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_counter(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""
Genera SCL para Contadores (CTU, CTD, CTUD).
Requiere datos de instancia (DB o STAT).
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # CTU, CTD, CTUD
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# 1. Definir pines de entrada esperados
input_pins_map = {
"CTU": ["CU", "R", "PV"],
"CTD": ["CD", "LD", "PV"],
"CTUD": ["CU", "CD", "R", "LD", "PV"]
}
input_pins = input_pins_map.get(instr_type_original.upper())
if not input_pins:
instruction["scl"] = f"// ERROR: Tipo de contador no soportado: {instr_type_original}"
instruction["type"] = instr_type_original + "_error"
return True
# 2. Procesar Parámetros de Entrada
scl_call_params = []
dependencies_resolved = True
optional_pins = {"R", "LD"} # Estos pueden no estar conectados
for pin in input_pins:
pin_info = instruction["inputs"].get(pin)
if pin_info: # Si el pin está definido en el JSON
source_sympy_or_const = get_sympy_representation(pin_info, network_id, sympy_map, symbol_manager)
if source_sympy_or_const is None:
# print(f"DEBUG Counter {instr_uid}: Input param '{pin}' dependency not ready.")
dependencies_resolved = False
break
# Convertir a SCL para la llamada (sin simplificar aquí)
param_scl_value = sympy_expr_to_scl(source_sympy_or_const, symbol_manager)
pin_name_scl = format_variable_name(pin) # Formatear nombre del parámetro
scl_call_params.append(f"{pin_name_scl} := {param_scl_value}")
elif pin not in optional_pins: # Si falta un pin requerido
print(f"Error: Falta entrada requerida '{pin}' para {instr_type_original} UID {instr_uid}.")
instruction["scl"] = f"// ERROR: Falta entrada requerida '{pin}' para {instr_type_original} UID {instr_uid}."
instruction["type"] = instr_type_original + "_error"
return True
if not dependencies_resolved:
return False
# 3. Obtener Nombre de Instancia
# Asumiendo que x1 o una fase previa llena 'instance_db' si es un FB multi-instancia
instance_name_raw = instruction.get("instance_db")
if not instance_name_raw:
# Asumiendo que es STAT si no hay DB instancia explícito (requiere declaración en x3)
instance_name_raw = instruction.get("instance_name") # Buscar nombre directo si x1 lo provee
if not instance_name_raw:
instance_name_raw = f"#CTR_INSTANCE_{instr_uid}" # Placeholder final
print(f"Advertencia: No se encontró nombre/instancia para {instr_type_original} UID {instr_uid}. Usando placeholder '{instance_name_raw}'.")
instance_name_scl = format_variable_name(instance_name_raw)
# 4. Generar la llamada SCL
param_string = ", ".join(scl_call_params)
scl_call = f"{instance_name_scl}({param_string}); // TODO: Declarar {instance_name_scl} : {instr_type_original.upper()}; en VAR_STAT o VAR"
# Contadores no suelen tener EN/ENO explícito en LAD, se asume siempre habilitado
instruction["scl"] = scl_call # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# 4. Actualizar sympy_map para las salidas (QU, QD, CV)
output_pins_map = {
"CTU": ["QU", "CV"],
"CTD": ["QD", "CV"],
"CTUD": ["QU", "QD", "CV"]
}
output_pins = output_pins_map.get(instr_type_original.upper(), [])
for pin in output_pins:
map_key = (network_id, instr_uid, pin)
output_scl_access = f"{instance_name_scl}.{pin.upper()}"
if pin.upper() in ["QU", "QD"]: # These are boolean outputs
# *** Store SymPy Symbol for boolean outputs QU/QD ***
sympy_out_symbol = symbol_manager.get_symbol(output_scl_access)
if sympy_out_symbol:
sympy_map[map_key] = sympy_out_symbol # Store SYMBOL
else:
print(f"Error: Could not create symbol for {output_scl_access} in {instr_type_original} {instr_uid}")
sympy_map[map_key] = None
else:
# For non-boolean (like CV - count value), store SCL access string
sympy_map[map_key] = output_scl_access
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para los contadores CTU, CTD, CTUD."""
return [
{'type_name': 'ctu', 'processor_func': process_counter, 'priority': 5},
{'type_name': 'ctd', 'processor_func': process_counter, 'priority': 5},
{'type_name': 'ctud', 'processor_func': process_counter, 'priority': 5}
]

View File

@ -1,85 +0,0 @@
# processors/process_edge_detector.py
# -*- coding: utf-8 -*-
import sympy
import traceback
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_edge_detector(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""
Genera la expresión SymPy para el pulso de PBox (P_TRIG) o NBox (N_TRIG).
Guarda la expresión SymPy del pulso en sympy_map['out'].
Genera y guarda el SCL para la actualización de memoria en '_edge_mem_update_scl'.
El campo 'scl' principal se deja casi vacío/comentario.
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # PBox o NBox
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# 1. Obtener CLK (como SymPy expr) y MemBit (como SymPy Symbol)
clk_input = instruction["inputs"].get("in")
mem_bit_input = instruction["inputs"].get("bit")
sympy_clk_expr = get_sympy_representation(clk_input, network_id, sympy_map, symbol_manager)
mem_bit_plc_name = extract_plc_variable_name(mem_bit_input)
sympy_mem_bit_symbol = symbol_manager.get_symbol(mem_bit_plc_name) if mem_bit_plc_name else None
# 2. Verificar dependencias
if sympy_clk_expr is None: return False
if sympy_mem_bit_symbol is None:
err_msg = f"MemBit no resuelto o no es variable para {instr_type_original} UID {instr_uid}"
print(f"Error: {err_msg}")
instruction["scl"] = f"// ERROR: {err_msg}"
instruction["type"] = instr_type_original + "_error"
return True
# 3. Generar Lógica SymPy del *pulso*
result_pulse_sympy_expr = sympy.false # Default
scl_comment_prefix = ""
if instr_type_original.upper() == "PBOX": # P_TRIG
result_pulse_sympy_expr = sympy.And(sympy_clk_expr, sympy.Not(sympy_mem_bit_symbol))
scl_comment_prefix = "P_TRIG"
elif instr_type_original.upper() == "NBOX": # N_TRIG
result_pulse_sympy_expr = sympy.And(sympy.Not(sympy_clk_expr), sympy_mem_bit_symbol)
scl_comment_prefix = "N_TRIG"
else: # Error
instruction["scl"] = f"// ERROR: Tipo de flanco inesperado {instr_type_original}"
instruction["type"] = instr_type_original + "_error"
return True
# 4. Generar el SCL para la actualización del bit de memoria
# Necesitamos la representación SCL de la entrada CLK
clk_scl_str = sympy_expr_to_scl(sympy_clk_expr, symbol_manager)
# Usamos el nombre PLC original formateado para el bit de memoria
mem_bit_scl_name = format_variable_name(mem_bit_plc_name)
scl_mem_update = f"{mem_bit_scl_name} := {clk_scl_str};"
scl_comment_for_update = f"// {scl_comment_prefix}({clk_scl_str}) - Mem: {mem_bit_scl_name}"
# 5. Almacenar Resultados
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = result_pulse_sympy_expr # Guardar EXPRESIÓN SymPy del pulso
# Guardar SCL de actualización + Comentario en campo temporal
instruction['_edge_mem_update_scl'] = f"{scl_mem_update} {scl_comment_for_update}"
# Marcar como procesado, SCL principal es solo comentario
instruction['scl'] = f"// {instr_type_original} SymPy processed, logic in consumer"
instruction["type"] = instr_type_original + SCL_SUFFIX
# 6. Propagar ENO (es la expresión SymPy de CLK)
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_clk_expr
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la info para los detectores de flanco PBox y NBox."""
return [
{'type_name': 'pbox', 'processor_func': process_edge_detector, 'priority': 2},
{'type_name': 'nbox', 'processor_func': process_edge_detector, 'priority': 2}
]

View File

@ -1,64 +0,0 @@
# processors/process_eq.py
# -*- coding: utf-8 -*-
import sympy
import traceback
# Usar las nuevas utilidades de SymPy
from .processor_utils import get_sympy_representation, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed" # Nuevo sufijo
def process_eq(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""
Genera la expresión SymPy para el comparador de igualdad (EQ).
El resultado se propaga por sympy_map['out'].
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Eq")
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Obtener operandos como expresiones SymPy o constantes/strings
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
op1_sympy = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager)
op2_sympy = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager)
# Obtener 'pre' (RLO anterior) como expresión SymPy
pre_input = instruction["inputs"].get("pre") # Asumir 'pre' como entrada RLO estándar
sympy_pre_rlo = get_sympy_representation(pre_input, network_id, sympy_map, symbol_manager) if pre_input else sympy.true
# Verificar dependencias
if op1_sympy is None or op2_sympy is None or sympy_pre_rlo is None:
# print(f"DEBUG EQ {instr_uid}: Dependency not ready")
return False
# Crear la expresión de igualdad SymPy
try:
# sympify puede ser necesario si los operandos son strings de constantes
op1_eval = sympy.sympify(op1_sympy) if isinstance(op1_sympy, str) else op1_sympy
op2_eval = sympy.sympify(op2_sympy) if isinstance(op2_sympy, str) else op2_sympy
comparison_expr = sympy.Eq(op1_eval, op2_eval) # Eq para igualdad
except (SyntaxError, TypeError, ValueError) as e:
print(f"Error creating SymPy equality for {instr_uid}: {e}")
instruction["scl"] = f"// ERROR creando expr SymPy EQ {instr_uid}: {e}"
instruction["type"] = instr_type_original + "_error"
return True
# Guardar resultado (Expresión SymPy booleana) en el mapa para 'out'
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = comparison_expr
# Guardar el RLO de entrada ('pre') como ENO en el mapa SymPy
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_pre_rlo
# Marcar como procesado, SCL principal es solo comentario
instruction["scl"] = f"// SymPy EQ: {comparison_expr}" # Comentario opcional
instruction["type"] = instr_type_original + SCL_SUFFIX
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el comparador de igualdad (EQ)."""
return {'type_name': 'eq', 'processor_func': process_eq, 'priority': 2}

View File

@ -1,90 +0,0 @@
# processors/process_math.py
# -*- coding: utf-8 -*-
import sympy
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_math(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""
Genera SCL para operaciones matemáticas (SUB, MUL, DIV), simplificando EN.
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # SUB, MUL, DIV
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Mapa de tipos a operadores SCL string
op_map = {"SUB": "-", "MUL": "*", "DIV": "/"}
scl_operator = op_map.get(instr_type_original.upper())
if not scl_operator:
instruction["scl"] = f"// ERROR: Operación matemática no soportada: {instr_type_original}"
instruction["type"] = instr_type_original + "_error"
return True
# Obtener EN (SymPy), IN1, IN2 (SymPy o Constante/String)
en_input = instruction["inputs"].get("en")
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true
op1_sympy_or_const = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager)
op2_sympy_or_const = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager)
# Obtener destino SCL
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=True)
# Verificar dependencias
if sympy_en_expr is None or op1_sympy_or_const is None or op2_sympy_or_const is None or target_scl_name is None:
return False
# Convertir operandos SymPy/Constante a SCL strings
op1_scl = sympy_expr_to_scl(op1_sympy_or_const, symbol_manager)
op2_scl = sympy_expr_to_scl(op2_sympy_or_const, symbol_manager)
# Añadir paréntesis si contienen operadores (más seguro)
# La función sympy_expr_to_scl debería idealmente manejar esto, pero doble chequeo simple:
op1_scl_formatted = f"({op1_scl})" if re.search(r'[+\-*/ ]', op1_scl) else op1_scl
op2_scl_formatted = f"({op2_scl})" if re.search(r'[+\-*/ ]', op2_scl) else op2_scl
# Generar SCL Core
scl_core = f"{target_scl_name} := {op1_scl_formatted} {scl_operator} {op2_scl_formatted};"
# Aplicar Condición EN (Simplificando EN)
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# Actualizar instrucción y mapa
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (nombre SCL del destino) y ENO (expresión SymPy)
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = target_scl_name # Guardar nombre del destino
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve info para SUB, MUL, DIV."""
return [
{'type_name': 'sub', 'processor_func': process_math, 'priority': 4},
{'type_name': 'mul', 'processor_func': process_math, 'priority': 4},
{'type_name': 'div', 'processor_func': process_math, 'priority': 4}
]

View File

@ -1,75 +0,0 @@
# processors/process_mod.py
# -*- coding: utf-8 -*-
import sympy
import traceback
import re # Importar re si no estaba
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_mod(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""Genera SCL para Modulo (MOD), simplificando EN."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Mod")
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Obtener EN (SymPy), IN1, IN2 (SymPy o Constante/String)
en_input = instruction["inputs"].get("en")
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true
op1_sympy_or_const = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager)
op2_sympy_or_const = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager)
# Obtener destino SCL
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=True)
# Verificar dependencias
if sympy_en_expr is None or op1_sympy_or_const is None or op2_sympy_or_const is None or target_scl_name is None:
return False
# Convertir operandos SymPy/Constante a SCL strings
op1_scl = sympy_expr_to_scl(op1_sympy_or_const, symbol_manager)
op2_scl = sympy_expr_to_scl(op2_sympy_or_const, symbol_manager)
# Añadir paréntesis si contienen operadores
op1_scl_formatted = f"({op1_scl})" if re.search(r'[+\-*/ ]', op1_scl) else op1_scl
op2_scl_formatted = f"({op2_scl})" if re.search(r'[+\-*/ ]', op2_scl) else op2_scl
# Generar SCL Core
scl_core = f"{target_scl_name} := {op1_scl_formatted} MOD {op2_scl_formatted};"
# Aplicar Condición EN (Simplificando EN)
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# Actualizar instrucción y mapa
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (nombre SCL del destino) y ENO (expresión SymPy)
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = target_scl_name # Guardar nombre del destino
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la operación Modulo."""
return {'type_name': 'mod', 'processor_func': process_mod, 'priority': 4}

View File

@ -1,75 +0,0 @@
# processors/process_move.py
# -*- coding: utf-8 -*-
import sympy
import traceback
import re # Importar re
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_move(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""Genera SCL para Move, simplificando la condición EN."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Move")
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Obtener EN (SymPy) e IN (SymPy o Constante/String)
en_input = instruction["inputs"].get("en")
in_info = instruction["inputs"].get("in")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true
input_sympy_or_const = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager)
# Obtener destino SCL (requiere destino explícito para MOVE)
target_scl_name = get_target_scl_name(instruction, "out1", network_id, default_to_temp=False)
if target_scl_name is None:
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=False)
# Verificar dependencias
if sympy_en_expr is None or input_sympy_or_const is None:
return False
if target_scl_name is None:
print(f"Error: MOVE {instr_uid} sin destino claro en 'out' o 'out1'.")
instruction["scl"] = f"// ERROR: MOVE {instr_uid} sin destino claro."
instruction["type"] = instr_type_original + "_error"
return True # Procesado con error
# Convertir la entrada (SymPy o Constante) a SCL string
input_scl = sympy_expr_to_scl(input_sympy_or_const, symbol_manager)
# Generar SCL Core
scl_core = f"{target_scl_name} := {input_scl};"
# Aplicar Condición EN (Simplificando EN)
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# Actualizar instrucción y mapa
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (nombre SCL del destino) y ENO (expresión SymPy)
# Asumiendo que out y out1 deben propagar el mismo valor
sympy_map[(network_id, instr_uid, "out")] = target_scl_name
sympy_map[(network_id, instr_uid, "out1")] = target_scl_name
sympy_map[(network_id, instr_uid, "eno")] = sympy_en_expr
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la operación Move."""
return {'type_name': 'move', 'processor_func': process_move, 'priority': 3}

View File

@ -1,54 +0,0 @@
# processors/process_not.py
# -*- coding: utf-8 -*-
import sympy
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed" # Nuevo sufijo
def process_not(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""Genera la expresión SymPy para la inversión lógica NOT."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Not")
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Obtener entrada como expresión SymPy
in_info = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager)
# Verificar dependencias
if sympy_expr_in is None:
# print(f"DEBUG Not {instr_uid}: Dependency not ready")
return False
# Crear la expresión NOT de SymPy
try:
not_expr = sympy.Not(sympy_expr_in)
# ¿Simplificar aquí? NOT(NOT A) -> A; NOT(TRUE) -> FALSE, etc.
# simplify_logic podría hacer esto, pero puede ser costoso en cada paso.
# SymPy podría manejar simplificaciones básicas automáticamente.
# Opcional: not_expr = sympy.simplify_logic(not_expr)
except Exception as e:
print(f"Error creating SymPy Not for {instr_uid}: {e}")
instruction["scl"] = f"// ERROR creando expr SymPy NOT {instr_uid}: {e}"
instruction["type"] = instr_type_original + "_error"
return True
# Guardar resultado (Expresión SymPy) en el mapa para 'out'
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = not_expr
# Marcar como procesado, SCL principal es solo comentario
instruction["scl"] = f"// SymPy NOT: {not_expr}" # Comentario opcional
instruction["type"] = instr_type_original + SCL_SUFFIX
# NOT no tiene EN/ENO explícito en LAD, modifica el RLO ('out')
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la operación Not."""
return {'type_name': 'not', 'processor_func': process_not, 'priority': 1}

View File

@ -1,69 +0,0 @@
# processors/process_o.py
# -*- coding: utf-8 -*-
import sympy
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed" # Nuevo sufijo
def process_o(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""Genera la expresión SymPy para la operación lógica O (OR)."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "O")
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Buscar todas las entradas 'in', 'in1', 'in2', ...
input_pins = sorted([pin for pin in instruction.get("inputs", {}) if pin.startswith("in")])
if not input_pins:
print(f"Error: O {instr_uid} sin pines de entrada (inX).")
instruction["scl"] = f"// ERROR: O {instr_uid} sin pines inX"
instruction["type"] = instr_type_original + "_error"
return True
sympy_parts = []
all_resolved = True
for pin in input_pins:
input_info = instruction["inputs"][pin]
sympy_expr = get_sympy_representation(input_info, network_id, sympy_map, symbol_manager)
if sympy_expr is None:
all_resolved = False
# print(f"DEBUG: O {instr_uid} esperando pin {pin}")
break # Salir si una dependencia no está lista
# Optimización: No incluir FALSE en un OR
if sympy_expr != sympy.false:
sympy_parts.append(sympy_expr)
if not all_resolved:
return False # Esperar dependencias
# Construir la expresión OR de SymPy
result_sympy_expr = sympy.false # Valor por defecto si no hay entradas válidas o todas son FALSE
if sympy_parts:
# Usar sympy.Or para construir la expresión
result_sympy_expr = sympy.Or(*sympy_parts)
# Simplificar casos obvios como OR(X) -> X, OR(X, TRUE) -> TRUE
# simplify_logic aquí puede ser prematuro, mejor al final.
# Pero Or() podría simplificar automáticamente OR(X) -> X.
# Opcional: result_sympy_expr = sympy.simplify_logic(result_sympy_expr)
# Guardar la expresión SymPy resultante en el mapa para 'out'
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = result_sympy_expr
# Marcar como procesado, SCL principal es solo comentario
instruction["scl"] = f"// SymPy O: {result_sympy_expr}" # Comentario opcional
instruction["type"] = instr_type_original + SCL_SUFFIX
# La instrucción 'O' no tiene ENO propio, propaga el resultado por 'out'
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la operación lógica O (OR)."""
return {'type_name': 'o', 'processor_func': process_o, 'priority': 1}

View File

@ -1,74 +0,0 @@
# processors/process_rcoil.py
# -*- coding: utf-8 -*-
import sympy
import traceback
import re
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_rcoil(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data ):
"""Genera SCL para Reset Coil (RCoil), simplificando la condición."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "RCoil")
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Obtener condición de entrada (SymPy expr)
in_info = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager)
# Obtener operando (nombre SCL del destino)
target_scl_name = get_target_scl_name(instruction, "operand", network_id, default_to_temp=False) # RCoil necesita destino explícito
# Verificar dependencias
if sympy_expr_in is None: return False
if target_scl_name is None:
print(f"Error: RCoil {instr_uid} operando no es variable o falta info.")
instruction["scl"] = f"// ERROR: RCoil {instr_uid} operando no es variable."
instruction["type"] = instr_type_original + "_error"
return True
# No hacer nada si la condición es FALSE constante
if sympy_expr_in == sympy.false:
instruction["scl"] = f"// RCoil {instr_uid} con condición FALSE constante, optimizado."
instruction["type"] = instr_type_original + SCL_SUFFIX
return True
# Generar SCL Core (Reset)
scl_core = f"{target_scl_name} := FALSE;"
# Aplicar Condición IF si no es TRUE constante
scl_final = ""
if sympy_expr_in != sympy.true:
# Simplificar la condición ANTES de convertirla a SCL
try:
#simplified_expr = sympy.simplify_logic(sympy_expr_in, force=True)
simplified_expr = sympy.logic.boolalg.to_dnf(sympy_expr_in, simplify=True)
except Exception as e:
print(f"Error simplifying condition for RCoil {instr_uid}: {e}")
simplified_expr = sympy_expr_in # Fallback
condition_scl = sympy_expr_to_scl(simplified_expr, symbol_manager)
# Evitar IF TRUE THEN...
if condition_scl == "TRUE":
scl_final = scl_core
else:
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
# Condición es TRUE constante
scl_final = scl_core
# Actualizar instrucción
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# RCoil no tiene salida lógica para propagar en sympy_map
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la bobina Reset (RCoil)."""
return {'type_name': 'rcoil', 'processor_func': process_rcoil, 'priority': 3}

View File

@ -1,74 +0,0 @@
# processors/process_scoil.py
# -*- coding: utf-8 -*-
import sympy
import traceback
import re
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_scoil(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""Genera SCL para Set Coil (SCoil), simplificando la condición."""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "SCoil")
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# Obtener condición de entrada (SymPy expr)
in_info = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager)
# Obtener operando (nombre SCL del destino)
target_scl_name = get_target_scl_name(instruction, "operand", network_id, default_to_temp=False) # SCoil necesita destino
# Verificar dependencias
if sympy_expr_in is None: return False
if target_scl_name is None:
print(f"Error: SCoil {instr_uid} operando no es variable o falta info.")
instruction["scl"] = f"// ERROR: SCoil {instr_uid} operando no es variable."
instruction["type"] = instr_type_original + "_error"
return True
# No hacer nada si la condición es FALSE constante
if sympy_expr_in == sympy.false:
instruction["scl"] = f"// SCoil {instr_uid} con condición FALSE constante, optimizado."
instruction["type"] = instr_type_original + SCL_SUFFIX
return True
# Generar SCL Core (Set)
scl_core = f"{target_scl_name} := TRUE;"
# Aplicar Condición IF si no es TRUE constante
scl_final = ""
if sympy_expr_in != sympy.true:
# Simplificar la condición ANTES de convertirla a SCL
try:
#simplified_expr = sympy.simplify_logic(sympy_expr_in, force=True)
simplified_expr = sympy.logic.boolalg.to_dnf(sympy_expr_in, simplify=True)
except Exception as e:
print(f"Error simplifying condition for SCoil {instr_uid}: {e}")
simplified_expr = sympy_expr_in # Fallback
condition_scl = sympy_expr_to_scl(simplified_expr, symbol_manager)
# Evitar IF TRUE THEN...
if condition_scl == "TRUE":
scl_final = scl_core
else:
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
# Condición es TRUE constante
scl_final = scl_core
# Actualizar instrucción
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# SCoil no tiene salida lógica para propagar en sympy_map
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la bobina Set (SCoil)."""
return {'type_name': 'scoil', 'processor_func': process_scoil, 'priority': 3}

View File

@ -1,77 +0,0 @@
# processors/process_sd.py
# -*- coding: utf-8 -*-
import sympy
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_sd(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""
Genera SCL para Temporizador On-Delay (Sd -> TON).
Requiere datos de instancia (DB o STAT/TEMP).
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = "Sd" # Tipo original LAD
if instruction.get("type","").endswith(SCL_SUFFIX) or "_error" in instruction.get("type",""):
return False
# 1. Obtener Inputs: s (start), tv (time value), timer (instance)
s_info = instruction["inputs"].get("s")
tv_info = instruction["inputs"].get("tv")
timer_instance_info = instruction["inputs"].get("timer")
sympy_s_expr = get_sympy_representation(s_info, network_id, sympy_map, symbol_manager)
# tv suele ser constante, pero lo obtenemos igual
sympy_or_const_tv = get_sympy_representation(tv_info, network_id, sympy_map, symbol_manager)
# Obtener el nombre de la INSTANCIA (no su valor)
instance_plc_name = extract_plc_variable_name(timer_instance_info)
# Verificar dependencias
if sympy_s_expr is None or sympy_or_const_tv is None: return False
if instance_plc_name is None:
print(f"Error: Sd {instr_uid} sin variable de instancia 'timer'.")
instance_plc_name = f"#TON_INSTANCE_{instr_uid}" # Placeholder con error implícito
print(f"Advertencia: Usando placeholder '{instance_plc_name}'. ¡Declarar en SCL!")
# Podríamos marcar como error, pero intentamos generar algo
# instruction["type"] = instr_type_original + "_error"
# return True
# Formatear nombre de instancia
instance_name_scl = format_variable_name(instance_plc_name)
# Convertir entradas SymPy/Constante a SCL strings
s_scl = sympy_expr_to_scl(sympy_s_expr, symbol_manager)
tv_scl = sympy_expr_to_scl(sympy_or_const_tv, symbol_manager)
# Generar la llamada SCL (TON usa IN, PT)
# Ignoramos 'r' (reset) de Sd
scl_call = f"{instance_name_scl}(IN := {s_scl}, PT := {tv_scl}); // TODO: Declarar {instance_name_scl} : TON;"
# Actualizar instrucción
instruction["scl"] = scl_call # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# 7. Actualizar sympy_map para las salidas Q y RT
map_key_q = (network_id, instr_uid, "q")
q_output_scl_access = f"{instance_name_scl}.Q" # SCL string to access output
# *** GET/CREATE AND STORE SYMBOL for boolean output Q ***
sympy_q_symbol = symbol_manager.get_symbol(q_output_scl_access)
if sympy_q_symbol:
sympy_map[map_key_q] = sympy_q_symbol # STORE THE SYMBOL OBJECT
else:
print(f"Error: Could not create symbol for {q_output_scl_access} in Sd {instr_uid}")
sympy_map[map_key_q] = None # Indicate error/unresolved
map_key_rt = (network_id, instr_uid, "rt")
# ET is TIME, store SCL access string
sympy_map[map_key_rt] = f"{instance_name_scl}.ET"
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el temporizador On-Delay (Sd -> TON)."""
return {'type_name': 'sd', 'processor_func': process_sd, 'priority': 5}

View File

@ -1,112 +0,0 @@
# processors/process_se.py
# -*- coding: utf-8 -*-
import sympy
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_se(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""
Genera SCL para Temporizador de Pulso (Se -> TP) o SdCoil (-> TON).
Usa SymPy para entradas y almacena Symbol para salida Q.
"""
instr_uid = instruction["instruction_uid"]
# Obtener tipo original (antes de añadir sufijo) para determinar comportamiento
instr_type_original = instruction.get("type", "").replace(SCL_SUFFIX,"").replace("_error","") # Se o SdCoil
current_type = instruction.get("type","") # Tipo actual para chequeo inicial
if current_type.endswith(SCL_SUFFIX) or "_error" in current_type:
return False
# Determinar el tipo de instrucción SCL y pines de entrada/salida correctos
scl_timer_type = "TP"
pin_in = "s" # Pin de entrada para Se
pin_time = "tv" # Pin de valor de tiempo para Se
pin_instance = "timer" # Pin donde se conecta la instancia para Se
pin_out_q = "q" # Pin de salida Q para Se
pin_out_time = "rt" # Pin de tiempo restante para Se -> TP.ET
# Ajustar pines si el tipo original era SdCoil
if instr_type_original == "SdCoil":
scl_timer_type = "TON" # SdCoil es funcionalmente un TON
pin_in = "in" # SdCoil usa 'in'
pin_time = "value" # SdCoil usa 'value'
pin_instance = "operand" # SdCoil usa 'operand' como instancia/variable de salida
pin_out_q = "out" # SdCoil usa 'out' como pin de salida Q
pin_out_time = None # SdCoil no tiene salida ET explícita
# 1. Obtener Inputs usando los nombres de pin correctos
s_info = instruction["inputs"].get(pin_in)
tv_info = instruction["inputs"].get(pin_time)
timer_instance_info = instruction["inputs"].get(pin_instance)
# Obtener representaciones (SymPy o Constante/String)
sympy_s_expr = get_sympy_representation(s_info, network_id, sympy_map, symbol_manager)
sympy_or_const_tv = get_sympy_representation(tv_info, network_id, sympy_map, symbol_manager)
# Obtener el nombre PLC original de la INSTANCIA
instance_plc_name = extract_plc_variable_name(timer_instance_info)
# 2. Verificar dependencias
if sympy_s_expr is None or sympy_or_const_tv is None:
# print(f"DEBUG {instr_type_original} {instr_uid}: Input/TV dependency not ready")
return False
if instance_plc_name is None:
print(f"Error: {instr_type_original} {instr_uid} sin variable de instancia en pin '{pin_instance}'.")
instance_plc_name = f"#{scl_timer_type}_INSTANCE_{instr_uid}" # Placeholder
print(f"Advertencia: Usando placeholder '{instance_plc_name}'. ¡Declarar en SCL!")
# 3. Formatear nombre de instancia para SCL
instance_name_scl = format_variable_name(instance_plc_name)
# 4. Convertir entradas SymPy/Constante a SCL strings (simplificando la entrada IN)
try:
# Simplificar la expresión de entrada booleana
simplified_s_expr = sympy.simplify_logic(sympy_s_expr, force=True)
simplified_s_expr = sympy.logic.boolalg.to_dnf(sympy_s_expr, simplify=True)
except Exception as e:
print(f"Error simplifying '{pin_in}' input for {instr_type_original} {instr_uid}: {e}")
simplified_s_expr = sympy_s_expr # Fallback
s_scl = sympy_expr_to_scl(simplified_s_expr, symbol_manager)
# tv normalmente es constante, sympy_expr_to_scl debería manejarlo
tv_scl = sympy_expr_to_scl(sympy_or_const_tv, symbol_manager)
# 5. Generar la llamada SCL
# Ignoramos 'r' (reset) de Se si existiera
scl_call = f"{instance_name_scl}(IN := {s_scl}, PT := {tv_scl}); // TODO: Declarar {instance_name_scl} : {scl_timer_type};"
# 6. Actualizar instrucción con el SCL final
instruction["scl"] = scl_call
instruction["type"] = instr_type_original + SCL_SUFFIX # Marcar como procesado
# 7. Actualizar sympy_map para las salidas (Q y ET si aplica)
# Usar los nombres de pin originales determinados al principio
map_key_q = (network_id, instr_uid, pin_out_q) # pin_out_q es 'q' o 'out'
q_output_scl_access = f"{instance_name_scl}.Q" # Siempre accedemos a .Q del FB SCL
# *** OBTENER/CREAR Y ALMACENAR SYMBOL para la salida booleana Q ***
sympy_q_symbol = symbol_manager.get_symbol(q_output_scl_access)
if sympy_q_symbol:
sympy_map[map_key_q] = sympy_q_symbol # Almacenar el OBJETO SYMBOL
else:
# Manejar error si no se pudo crear el símbolo
print(f"Error: No se pudo crear símbolo para {q_output_scl_access} en {instr_type_original} {instr_uid}")
sympy_map[map_key_q] = None # Indicar error/irresoluble
# Almacenar ET solo si corresponde (para Se, no para SdCoil)
if pin_out_time: # pin_out_time es 'rt' o None
map_key_rt = (network_id, instr_uid, pin_out_time)
# ET es TIME, no booleano. Almacenar el string SCL de acceso está bien.
sympy_map[map_key_rt] = f"{instance_name_scl}.ET" # Salida ET del FB SCL
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la info para Se (-> TP) y SdCoil (-> TON, manejado aquí)."""
return [
{'type_name': 'se', 'processor_func': process_se, 'priority': 5},
# Asegurarse que x1.py mapea SdCoil a este procesador o a uno específico
{'type_name': 'sdcoil', 'processor_func': process_se, 'priority': 5}
]

View File

@ -1,85 +0,0 @@
# processors/process_timer.py
# -*- coding: utf-8 -*-
import sympy
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_timer(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data):
"""
Genera SCL para Temporizadores (TON, TOF) directamente.
Requiere datos de instancia.
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "").replace(SCL_SUFFIX,"").replace("_error","") # TON o TOF
if instruction.get("type","").endswith(SCL_SUFFIX) or "_error" in instruction.get("type",""):
return False
scl_timer_type = instr_type_original.upper()
if scl_timer_type not in ["TON", "TOF"]:
instruction["scl"] = f"// ERROR: Tipo de temporizador directo no soportado: {instr_type_original}"
instruction["type"] = instr_type_original + "_error"
return True
# 1. Obtener Inputs: IN, PT, y nombre de instancia (implícito o explícito)
in_info = instruction["inputs"].get("IN")
pt_info = instruction["inputs"].get("PT")
# Buscar instancia: ¿está en inputs? ¿o como instance_db?
instance_plc_name = instruction.get("instance_db") # Buscar primero aquí
if not instance_plc_name:
# Si no, buscar un input llamado 'timer' o similar? No estándar.
# Asumir que debe estar declarado como STAT si no hay instance_db
instance_plc_name = instruction.get("instance_name") # Nombre directo?
if not instance_plc_name:
instance_plc_name = f"#{scl_timer_type}_INSTANCE_{instr_uid}" # Placeholder final
print(f"Advertencia: No se encontró nombre/instancia para {instr_type_original} UID {instr_uid}. Usando placeholder '{instance_plc_name}'.")
sympy_in_expr = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager)
sympy_or_const_pt = get_sympy_representation(pt_info, network_id, sympy_map, symbol_manager)
# Verificar dependencias
if sympy_in_expr is None or sympy_or_const_pt is None or instance_plc_name is None:
return False
# Formatear nombre de instancia
instance_name_scl = format_variable_name(instance_plc_name)
# Convertir entradas SymPy/Constante a SCL strings
in_scl = sympy_expr_to_scl(sympy_in_expr, symbol_manager)
pt_scl = sympy_expr_to_scl(sympy_or_const_pt, symbol_manager)
# Generar la llamada SCL
scl_call = f"{instance_name_scl}(IN := {in_scl}, PT := {pt_scl}); // TODO: Declarar {instance_name_scl} : {scl_timer_type};"
# Actualizar instrucción
instruction["scl"] = scl_call # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# 7. Actualizar sympy_map para las salidas Q y ET
map_key_q = (network_id, instr_uid, "Q") # Pin estándar SCL
# *** Store SymPy Symbol for boolean output Q ***
q_output_scl_access = f"{instance_name_scl}.Q" # String for SCL access
sympy_q_symbol = symbol_manager.get_symbol(q_output_scl_access) # Get/Create Symbol
if sympy_q_symbol:
sympy_map[map_key_q] = sympy_q_symbol # Store the SYMBOL
else:
print(f"Error: Could not create symbol for {q_output_scl_access} in {instr_type_original} {instr_uid}")
sympy_map[map_key_q] = None
map_key_et = (network_id, instr_uid, "ET") # Pin estándar SCL
# ET is TIME, store SCL access string
sympy_map[map_key_et] = f"{instance_name_scl}.ET"
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve info para TON y TOF directos."""
return [
{'type_name': 'ton', 'processor_func': process_timer, 'priority': 5},
{'type_name': 'tof', 'processor_func': process_timer, 'priority': 5}
]

View File

@ -1,310 +0,0 @@
# -*- coding: utf-8 -*-
# processors/processor_utils.py
import re
import sympy
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed" # <<< AÑADE ESTA LÍNEA
def format_variable_name(name):
"""Limpia el nombre de la variable para SCL."""
if not name:
return "_INVALID_NAME_"
if name.startswith('"') and name.endswith('"'):
return name
prefix = ""
if name.startswith("#"):
prefix = "#"
name = name[1:]
if name and name[0].isdigit():
name = "_" + name
name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
return prefix + name
def get_sympy_representation(source_info, network_id, sympy_map, symbol_manager):
"""Gets the SymPy expression object representing the source."""
if not source_info:
print("Warning: get_sympy_representation called with None source_info.")
return None # Or raise error
# Handle lists (OR branches) - Recursively call and combine with sympy.Or
if isinstance(source_info, list):
sympy_parts = []
all_resolved = True
for sub_source in source_info:
sub_sympy = get_sympy_representation(sub_source, network_id, sympy_map, symbol_manager)
if sub_sympy is None:
all_resolved = False
break
sympy_parts.append(sub_sympy)
if not all_resolved:
return None
if not sympy_parts:
return sympy.false # Empty OR is false
# Return sympy.Or only if there are multiple parts
return sympy.Or(*sympy_parts) if len(sympy_parts) > 1 else sympy_parts[0]
# Handle single source dictionary
source_type = source_info.get("type")
if source_type == "powerrail":
return sympy.true
elif source_type == "variable":
plc_name = extract_plc_variable_name(source_info)
if plc_name:
return symbol_manager.get_symbol(plc_name)
else:
print(f"Error: Variable source without name: {source_info}")
return None # Error case
elif source_type == "constant":
# Represent constants directly if possible, otherwise maybe as symbols?
# For boolean simplification, only TRUE/FALSE matter significantly.
dtype = str(source_info.get("datatype", "")).upper()
value = source_info.get("value")
if dtype == "BOOL":
return sympy.true if str(value).upper() == "TRUE" else sympy.false
else:
# For simplification, treat non-boolean constants as opaque symbols?
# Or just return their string representation if they won't be simplified anyway?
# Let's return their string value for now, processors will handle it.
# This might need refinement if constants need symbolic handling.
return str(value) # Or maybe symbol_manager.get_symbol(str(value))?
elif source_type == "connection":
map_key = (
network_id,
source_info.get("source_instruction_uid"),
source_info.get("source_pin"),
)
# Return the SymPy object from the map
return sympy_map.get(map_key) # Returns None if not found (dependency not ready)
elif source_type == "unknown_source":
print(f"Warning: Referring to unknown source UID: {source_info.get('uid')}")
return None # Cannot resolve
else:
print(f"Warning: Unknown source type: {source_info}")
return None # Cannot resolve
def sympy_expr_to_scl(expr, symbol_manager, format_prec=5):
"""Converts a SymPy expression to an SCL string using the symbol map."""
if expr is None: return "/* ERROR: None expression */"
if expr == sympy.true: return "TRUE"
if expr == sympy.false: return "FALSE"
# Use sympy's string printer with custom settings if needed
# For boolean, standard printing might be okay, but need to substitute symbols
try:
# Get the inverse map (py_id -> plc_name)
inverse_map = symbol_manager.get_inverse_map()
# Substitute symbols back to their py_id strings first
# Need to handle the structure (And, Or, Not)
scl_str = sympy.sstr(expr, order=None) # Basic string representation
# Now, carefully replace py_id back to PLC names using regex
# Sort keys by length descending to replace longer IDs first
for py_id in sorted(inverse_map.keys(), key=len, reverse=True):
# Use word boundaries to avoid replacing parts of other IDs
scl_str = re.sub(r'\b' + re.escape(py_id) + r'\b', inverse_map[py_id], scl_str)
# Replace SymPy operators/functions with SCL equivalents
scl_str = scl_str.replace('&', ' AND ')
scl_str = scl_str.replace('|', ' OR ')
scl_str = scl_str.replace('^', ' XOR ') # If XOR is used
scl_str = scl_str.replace('~', 'NOT ')
# Add spaces around operators if needed after substitution
scl_str = re.sub(r'AND', ' AND ', scl_str)
scl_str = re.sub(r'OR', ' OR ', scl_str)
scl_str = re.sub(r'XOR', ' XOR ', scl_str)
scl_str = re.sub(r'NOT', 'NOT ', scl_str) # Space after NOT
# Clean up potential double spaces, etc.
scl_str = re.sub(r'\s+', ' ', scl_str).strip()
# Handle parentheses potentially added by sstr - maybe remove redundant ones?
# Be careful not to break operator precedence.
return scl_str
except Exception as e:
print(f"Error converting SymPy expr '{expr}' to SCL: {e}")
traceback.print_exc()
return f"/* ERROR converting SymPy: {expr} */"
def get_scl_representation(source_info, network_id, scl_map, access_map):
if not source_info:
return None
if isinstance(source_info, list):
scl_parts = []
all_resolved = True
for sub_source in source_info:
sub_scl = get_scl_representation(
sub_source, network_id, scl_map, access_map
)
if sub_scl is None:
all_resolved = False
break
if (
sub_scl in ["TRUE", "FALSE"]
or (sub_scl.startswith('"') and sub_scl.endswith('"'))
or sub_scl.isdigit()
or (sub_scl.startswith("(") and sub_scl.endswith(")"))
):
scl_parts.append(sub_scl)
else:
scl_parts.append(f"({sub_scl})")
return (
" OR ".join(scl_parts)
if len(scl_parts) > 1
else (scl_parts[0] if scl_parts else "FALSE") if all_resolved else None
)
source_type = source_info.get("type")
if source_type == "powerrail":
return "TRUE"
elif source_type == "variable":
name = source_info.get("name")
# Asegurar que los nombres de variables se formatean correctamente aquí también
return (
format_variable_name(name)
if name
else f"_ERR_VAR_NO_NAME_{source_info.get('uid')}_"
)
elif source_type == "constant":
dtype = str(source_info.get("datatype", "")).upper()
value = source_info.get("value")
try:
if dtype == "BOOL":
return str(value).upper()
elif dtype in [
"INT",
"DINT",
"SINT",
"USINT",
"UINT",
"UDINT",
"LINT",
"ULINT",
"WORD",
"DWORD",
"LWORD",
"BYTE",
]:
return str(value)
elif dtype in ["REAL", "LREAL"]:
s_val = str(value)
return s_val if "." in s_val or "e" in s_val.lower() else s_val + ".0"
elif dtype == "STRING":
# Escapar comillas simples dentro del string si es necesario
str_val = str(value).replace("'", "''")
return f"'{str_val}'"
elif dtype == "TYPEDCONSTANT":
# Podría necesitar formateo específico basado en el tipo real
return str(value)
else:
# Otros tipos (TIME, DATE, etc.) - devolver como string por ahora
str_val = str(value).replace("'", "''")
return f"'{str_val}'"
except Exception as e:
print(f"Advertencia: Error formateando constante {source_info}: {e}")
return f"_ERR_CONST_FORMAT_{source_info.get('uid')}_"
elif source_type == "connection":
map_key = (
network_id,
source_info.get("source_instruction_uid"),
source_info.get("source_pin"),
)
return scl_map.get(map_key)
elif source_type == "unknown_source":
print(
f"Advertencia: Refiriendo a fuente desconocida UID: {source_info.get('uid')}"
)
return f"_ERR_UNKNOWN_SRC_{source_info.get('uid')}_"
else:
print(f"Advertencia: Tipo de fuente desconocido: {source_info}")
return f"_ERR_INVALID_SRC_TYPE_"
def format_variable_name(name):
"""Limpia el nombre de la variable para SCL."""
if not name:
return "_INVALID_NAME_"
# Si ya está entre comillas dobles, asumimos que es un nombre complejo (ej. "DB"."Variable")
# y lo devolvemos tal cual para SCL.
if name.startswith('"') and name.endswith('"'):
# Podríamos añadir validación extra aquí si fuera necesario
return name
# Si no tiene comillas, es un nombre simple (ej. Tag_1, #tempVar)
# Reemplazar caracteres no válidos (excepto '_') por '_'
# Permitir '#' al inicio para variables temporales
prefix = ""
if name.startswith("#"):
prefix = "#"
name = name[1:]
# Permitir letras, números y guiones bajos. Reemplazar el resto.
# Asegurarse de que no empiece con número (después del # si existe)
if name and name[0].isdigit():
name = "_" + name
# Reemplazar caracteres no válidos
name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
return prefix + name
def generate_temp_var_name(network_id, instr_uid, pin_name):
net_id_clean = str(network_id).replace("-", "_")
instr_uid_clean = str(instr_uid).replace("-", "_")
pin_name_clean = str(pin_name).replace("-", "_").lower()
# Usar # para variables temporales SCL estándar
return f"#_temp_{net_id_clean}_{instr_uid_clean}_{pin_name_clean}"
def get_target_scl_name(instruction, pin_name, network_id, default_to_temp=True):
"""Gets the SCL formatted name for a target variable.
Handles instruction outputs AND specific inputs like Coil operand.
"""
instr_uid = instruction["instruction_uid"]
# Ahora SCL_SUFFIX está definido en este módulo
instr_type_upper = instruction.get("type", "").upper().replace(SCL_SUFFIX.upper(), "").replace("_ERROR", "") # Check original type
target_info = None
# Special handling for inputs that represent the target variable
if instr_type_upper in ["COIL", "SCOIL", "RCOIL"] and pin_name == "operand":
target_info = instruction.get("inputs", {}).get("operand")
# Add other instructions where input pin == target if necessary
# elif instr_type_upper == "XYZ" and pin_name == "some_input_target_pin":
# target_info = instruction.get("inputs", {}).get(pin_name)
else:
# Default: Assume pin_name refers to an output pin
output_pin_data = instruction.get("outputs", {}).get(pin_name)
# Check if it's a list and has one connection (standard case)
if (output_pin_data and isinstance(output_pin_data, list) and len(output_pin_data) == 1):
target_info = output_pin_data[0]
# Add handling for direct output assignment if your JSON structure supports it
target_scl = None
if target_info:
if target_info.get("type") == "variable":
plc_name = target_info.get("name")
if plc_name:
target_scl = format_variable_name(plc_name) # Use existing util
else:
print(f"Error: Target variable for {instr_uid}.{pin_name} has no name (UID: {target_info.get('uid')}).")
elif target_info.get("type") == "constant":
print(f"Advertencia: Attempt to write to constant target {instr_uid}.{pin_name} (UID: {target_info.get('uid')}).")
# else: # Handle other target types if needed
# print(f"Advertencia: Target {instr_uid}.{pin_name} is not a variable: {target_info.get('type')}.")
# else: # No target info found for the specified pin
# print(f"DEBUG: No target info found for {instr_uid}.{pin_name}")
pass
# Handle default_to_temp logic
if target_scl:
return target_scl
elif default_to_temp:
# Generate temp only if no explicit target was found AND default is allowed
print(f"INFO: Generating temp var for {instr_uid}.{pin_name}") # Be informative
return generate_temp_var_name(network_id, instr_uid, pin_name)
else:
# No target found and default temps not allowed
return None

View File

@ -1,58 +0,0 @@
# processors/symbol_manager.py
import sympy
import re
class SymbolManager:
def __init__(self):
# plc_name -> py_id (e.g., '"DB".Var' -> 'v0_')
self.plc_to_py_id = {}
# py_id -> Symbol object (e.g., 'v0_' -> sympy.Symbol('v0_'))
self.py_id_to_symbol = {}
# py_id -> plc_name (e.g., 'v0_' -> '"DB".Var') - Inverse mapping
self.py_id_to_plc = {}
self.counter = 0
# Pre-define common keywords/constants to avoid mapping them
self.reserved_names = {"TRUE", "FALSE"} # Add others if needed
def _generate_py_id(self):
py_id = f"v{self.counter}_"
self.counter += 1
# Extremely unlikely collision, but check anyway
while py_id in self.py_id_to_symbol:
py_id = f"v{self.counter}_"
self.counter += 1
return py_id
def get_symbol(self, plc_var_name):
"""Gets/Creates a SymPy Symbol for a PLC variable name."""
if plc_var_name is None:
print("Warning: Attempted to get symbol for None PLC name.")
return None # Or handle error appropriately
if plc_var_name.upper() in self.reserved_names:
print(f"Warning: Attempted to create symbol for reserved name: {plc_var_name}")
return None # Or handle differently (e.g., return sympy.true/false?)
if plc_var_name not in self.plc_to_py_id:
py_id = self._generate_py_id()
self.plc_to_py_id[plc_var_name] = py_id
self.py_id_to_plc[py_id] = plc_var_name
self.py_id_to_symbol[py_id] = sympy.symbols(py_id)
# print(f"DEBUG SymbolManager: Created {py_id} -> {plc_var_name}") # Debug
else:
py_id = self.plc_to_py_id[plc_var_name]
return self.py_id_to_symbol.get(py_id)
def get_plc_name(self, py_id):
"""Gets the original PLC name from a py_id."""
return self.py_id_to_plc.get(py_id)
def get_inverse_map(self):
"""Returns the map needed for postprocessing (py_id -> plc_name)."""
return self.py_id_to_plc.copy()
# Helper function to extract PLC variable name from JSON operand info
def extract_plc_variable_name(operand_info):
if operand_info and operand_info.get("type") == "variable":
return operand_info.get("name")
return None # Not a variable or info missing

View File

@ -1,145 +0,0 @@
import argparse
import subprocess
import os
import sys
import locale
import glob # <--- Importar glob para buscar archivos
# (Función get_console_encoding y variable CONSOLE_ENCODING como en la respuesta anterior)
def get_console_encoding():
"""Obtiene la codificación preferida de la consola, con fallback."""
try:
return locale.getpreferredencoding(False)
except Exception:
return 'cp1252'
CONSOLE_ENCODING = get_console_encoding()
# Descomenta la siguiente línea si quieres ver la codificación detectada:
# print(f"Detected console encoding: {CONSOLE_ENCODING}")
# (Función run_script como en la respuesta anterior, usando CONSOLE_ENCODING)
def run_script(script_name, xml_arg):
"""Runs a given script with the specified XML file argument."""
script_path = os.path.join(os.path.dirname(__file__), script_name)
command = [sys.executable, script_path, xml_arg]
print(f"\n--- Running {script_name} with argument: {xml_arg} ---")
try:
result = subprocess.run(command,
check=True,
capture_output=True,
text=True,
encoding=CONSOLE_ENCODING,
errors='replace') # 'replace' para evitar errores
# Imprimir stdout y stderr
# Eliminar saltos de línea extra al final si existen
stdout_clean = result.stdout.strip()
stderr_clean = result.stderr.strip()
if stdout_clean:
print(stdout_clean)
if stderr_clean:
print("--- Stderr ---")
print(stderr_clean)
print("--------------")
print(f"--- {script_name} finished successfully ---")
return True
except FileNotFoundError:
print(f"Error: Script '{script_path}' not found.")
return False
except subprocess.CalledProcessError as e:
print(f"Error running {script_name}:")
print(f"Return code: {e.returncode}")
stdout_decoded = e.stdout.decode(CONSOLE_ENCODING, errors='replace').strip() if isinstance(e.stdout, bytes) else (e.stdout or "").strip()
stderr_decoded = e.stderr.decode(CONSOLE_ENCODING, errors='replace').strip() if isinstance(e.stderr, bytes) else (e.stderr or "").strip()
if stdout_decoded:
print("--- Stdout ---")
print(stdout_decoded)
if stderr_decoded:
print("--- Stderr ---")
print(stderr_decoded)
print("--------------")
return False
except Exception as e:
print(f"An unexpected error occurred while running {script_name}: {e}")
return False
# --- NUEVA FUNCIÓN PARA SELECCIONAR ARCHIVO ---
def select_xml_file():
"""Busca archivos .xml, los lista y pide al usuario que elija uno."""
print("No XML file specified. Searching for XML files in current directory...")
# Buscar archivos .xml en el directorio actual (.)
xml_files = sorted(glob.glob('*.xml')) # sorted para orden alfabético
if not xml_files:
print("Error: No .xml files found in the current directory.")
sys.exit(1)
print("\nAvailable XML files:")
for i, filename in enumerate(xml_files, start=1):
print(f" {i}: {filename}")
while True:
try:
choice = input(f"Enter the number of the file to process (1-{len(xml_files)}): ")
choice_num = int(choice)
if 1 <= choice_num <= len(xml_files):
selected_file = xml_files[choice_num - 1]
print(f"Selected: {selected_file}")
return selected_file
else:
print("Invalid choice. Please enter a number from the list.")
except ValueError:
print("Invalid input. Please enter a number.")
except EOFError: # Manejar si la entrada se cierra inesperadamente
print("\nSelection cancelled.")
sys.exit(1)
# --- FIN NUEVA FUNCIÓN ---
if __name__ == "__main__":
xml_filename = None
# Comprobar si se pasó un argumento de línea de comandos
# sys.argv[0] es el nombre del script, sys.argv[1] sería el primer argumento
if len(sys.argv) > 1:
# Si hay argumentos, usar argparse para parsearlo (permite -h, etc.)
parser = argparse.ArgumentParser(
description="Run the Simatic XML processing pipeline."
)
parser.add_argument(
"xml_file",
# Ya no necesitamos nargs='?' ni default aquí porque sabemos que hay un argumento
help="Path to the XML file to process.",
)
# Parsear solo los argumentos conocidos, ignorar extras si los hubiera
args, unknown = parser.parse_known_args()
xml_filename = args.xml_file
print(f"XML file specified via argument: {xml_filename}")
else:
# Si no hay argumentos, llamar a la función interactiva
xml_filename = select_xml_file()
# --- El resto del script continúa igual, usando xml_filename ---
# Verificar si el archivo XML de entrada (seleccionado o pasado) existe
if not os.path.exists(xml_filename):
print(f"Error: Selected or specified XML file not found: {xml_filename}")
sys.exit(1)
print(f"\nStarting pipeline for: {xml_filename}")
# Run scripts sequentially (asegúrate que los nombres son correctos)
script1 = "x1_to_json.py"
script2 = "x2_process.py"
script3 = "x3_generate_scl.py"
if run_script(script1, xml_filename):
if run_script(script2, xml_filename):
if run_script(script3, xml_filename):
print("\nPipeline completed successfully.")
else:
print("\nPipeline failed at script:", script3)
else:
print("\nPipeline failed at script:", script2)
else:
print("\nPipeline failed at script:", script1)

File diff suppressed because it is too large Load Diff

View File

@ -1,447 +0,0 @@
# -*- coding: utf-8 -*-
import json
import argparse
import os
import copy
import traceback
import re
import importlib
import sys
import sympy # Import sympy
# Import necessary components from processors directory
from processors.processor_utils import (
format_variable_name, # Keep if used outside processors
sympy_expr_to_scl, # Needed for IF grouping and maybe others
# get_target_scl_name might be used here? Unlikely.
)
from processors.symbol_manager import SymbolManager # Import the manager
# --- Constantes y Configuración ---
# SCL_SUFFIX = "_scl" # Old suffix
SCL_SUFFIX = "_sympy_processed" # New suffix to indicate processing method
GROUPED_COMMENT = "// Logic included in grouped IF"
SIMPLIFIED_IF_COMMENT = "// Simplified IF condition by script" # May still be useful
# Global data variable
data = {}
def process_group_ifs(instruction, network_id, sympy_map, symbol_manager, data):
"""
Busca condiciones (ya procesadas -> tienen expr SymPy en sympy_map)
y, si habilitan un grupo (>1) de bloques funcionales (con SCL ya generado),
construye el bloque IF agrupado CON LA CONDICIÓN SIMPLIFICADA.
Modifica el campo 'scl' de la instrucción generadora de condición.
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "").replace(SCL_SUFFIX, "").replace("_error", "")
made_change = False
# Check if this instruction *could* generate a condition suitable for grouping
# It must have been processed by the new SymPy method
if (
not instruction.get("type", "").endswith(SCL_SUFFIX) # Check if processed by new method
or "_error" in instruction.get("type", "")
or instruction.get("grouped", False)
or instr_type_original not in [ # Original types that produce boolean results
"Contact", "O", "Eq", "Ne", "Gt", "Lt", "Ge", "Le", "PBox", "NBox", "And", "Xor", "Not" # Add others like comparison
]
):
return False
# Avoid reagruping if SCL already contains a complex IF (less likely now)
current_scl = instruction.get("scl", "")
if current_scl.strip().startswith("IF") and "END_IF;" in current_scl and GROUPED_COMMENT not in current_scl:
return False
# *** Get the SymPy expression for the condition ***
map_key_out = (network_id, instr_uid, "out")
sympy_condition_expr = sympy_map.get(map_key_out)
# No SymPy expression found or trivial conditions
if sympy_condition_expr is None or sympy_condition_expr in [sympy.true, sympy.false]:
return False
# --- Find consumer instructions (logic similar to before) ---
grouped_instructions_cores = []
consumer_instr_list = []
network_logic = next((net["logic"] for net in data["networks"] if net["id"] == network_id), [])
if not network_logic: return False
groupable_types = [ # Types whose *final SCL* we want to group
"Move", "Add", "Sub", "Mul", "Div", "Mod", "Convert",
"Call_FC", "Call_FB", # Assuming these generate final SCL in their processors now
# SCoil/RCoil might also be groupable if their SCL is final assignment
"SCoil", "RCoil"
]
for consumer_instr in network_logic:
consumer_uid = consumer_instr["instruction_uid"]
if consumer_instr.get("grouped", False) or consumer_uid == instr_uid:
continue
consumer_en = consumer_instr.get("inputs", {}).get("en")
consumer_type = consumer_instr.get("type", "") # Current type suffix matters
consumer_type_original = consumer_type.replace(SCL_SUFFIX, "").replace("_error", "")
is_enabled_by_us = False
if ( isinstance(consumer_en, dict) and consumer_en.get("type") == "connection" and
consumer_en.get("source_instruction_uid") == instr_uid and
consumer_en.get("source_pin") == "out"):
is_enabled_by_us = True
# Check if consumer is groupable AND has its final SCL generated
# The suffix check needs adjustment based on how terminating processors set it.
# Assuming processors like Move, Add, Call, SCoil, RCoil NOW generate final SCL and add a suffix.
if ( is_enabled_by_us and consumer_type.endswith(SCL_SUFFIX) and # Or a specific "final_scl" suffix
consumer_type_original in groupable_types ):
consumer_scl = consumer_instr.get("scl", "")
# Extract core SCL (logic is similar, maybe simpler if SCL is cleaner now)
core_scl = None
if consumer_scl:
# If consumer SCL itself is an IF generated by EN, take the body
if consumer_scl.strip().startswith("IF"):
match = re.search(r"THEN\s*(.*?)\s*END_IF;", consumer_scl, re.DOTALL | re.IGNORECASE)
core_scl = match.group(1).strip() if match else None
elif not consumer_scl.strip().startswith("//"): # Otherwise, take the whole line if not comment
core_scl = consumer_scl.strip()
if core_scl:
grouped_instructions_cores.append(core_scl)
consumer_instr_list.append(consumer_instr)
# --- If groupable consumers found ---
if len(grouped_instructions_cores) > 1:
print(f"INFO: Agrupando {len(grouped_instructions_cores)} instr. bajo condición de {instr_type_original} UID {instr_uid}")
# *** Simplify the SymPy condition ***
try:
#simplified_expr = sympy.simplify_logic(sympy_condition_expr, force=True)
simplified_expr = sympy.logic.boolalg.to_dnf(sympy_condition_expr, simplify=True)
except Exception as e:
print(f"Error simplifying condition for grouping UID {instr_uid}: {e}")
simplified_expr = sympy_condition_expr # Fallback
# *** Convert simplified condition to SCL string ***
condition_scl_simplified = sympy_expr_to_scl(simplified_expr, symbol_manager)
# *** Build the grouped IF SCL ***
scl_grouped_lines = [f"IF {condition_scl_simplified} THEN"]
for core_line in grouped_instructions_cores:
indented_core = "\n".join([f" {line.strip()}" for line in core_line.splitlines()])
scl_grouped_lines.append(indented_core)
scl_grouped_lines.append("END_IF;")
final_grouped_scl = "\n".join(scl_grouped_lines)
# Update the generator instruction's SCL
instruction["scl"] = final_grouped_scl
# Mark consumers as grouped
for consumer_instr in consumer_instr_list:
consumer_instr["scl"] = f"{GROUPED_COMMENT} (by UID {instr_uid})"
consumer_instr["grouped"] = True
made_change = True
return made_change
def load_processors(processors_dir="processors"):
"""
Escanea el directorio, importa módulos, construye el mapa y una lista
ordenada por prioridad.
"""
processor_map = {}
processor_list_unsorted = [] # Lista para guardar (priority, type_name, func)
default_priority = 10 # Prioridad si no se define en get_processor_info
if not os.path.isdir(processors_dir):
print(f"Error: Directorio de procesadores no encontrado: '{processors_dir}'")
return processor_map, [] # Devuelve mapa vacío y lista vacía
print(f"Cargando procesadores desde: '{processors_dir}'")
processors_package = os.path.basename(processors_dir)
for filename in os.listdir(processors_dir):
if filename.startswith("process_") and filename.endswith(".py"):
module_name_rel = filename[:-3]
full_module_name = f"{processors_package}.{module_name_rel}"
try:
module = importlib.import_module(full_module_name)
if hasattr(module, 'get_processor_info') and callable(module.get_processor_info):
processor_info = module.get_processor_info()
info_list = []
if isinstance(processor_info, dict):
info_list = [processor_info]
elif isinstance(processor_info, list):
info_list = processor_info
else:
print(f" Advertencia: get_processor_info en {full_module_name} devolvió tipo inesperado. Se ignora.")
continue
for info in info_list:
if isinstance(info, dict) and 'type_name' in info and 'processor_func' in info:
type_name = info['type_name'].lower()
processor_func = info['processor_func']
# Obtener prioridad, usar default si no existe
priority = info.get('priority', default_priority)
if callable(processor_func):
if type_name in processor_map:
print(f" Advertencia: '{type_name}' en {full_module_name} sobrescribe definición anterior.")
processor_map[type_name] = processor_func
# Añadir a la lista para ordenar
processor_list_unsorted.append({'priority': priority, 'type_name': type_name, 'func': processor_func})
print(f" - Cargado '{type_name}' (Prio: {priority}) desde {module_name_rel}.py")
else:
print(f" Advertencia: 'processor_func' para '{type_name}' en {full_module_name} no es callable.")
else:
print(f" Advertencia: Entrada inválida en {full_module_name}: {info}")
else:
print(f" Advertencia: Módulo {module_name_rel}.py no tiene 'get_processor_info'.")
except ImportError as e:
print(f"Error importando {full_module_name}: {e}")
except Exception as e:
print(f"Error procesando {full_module_name}: {e}")
traceback.print_exc()
# Ordenar la lista por prioridad (menor primero)
processor_list_sorted = sorted(processor_list_unsorted, key=lambda x: x['priority'])
print(f"\nTotal de tipos de procesadores cargados: {len(processor_map)}")
print(f"Orden de procesamiento por prioridad: {[item['type_name'] for item in processor_list_sorted]}")
# Devolver el mapa (para lookup rápido si es necesario) y la lista ordenada
return processor_map, processor_list_sorted
# --- Bucle Principal de Procesamiento (Modificado) ---
def process_json_to_scl(json_filepath):
"""
Lee el JSON simplificado, aplica los procesadores dinámicamente cargados
siguiendo un orden de prioridad, y guarda el JSON procesado.
"""
global data # Necesario si process_group_ifs (definido fuera) accede a data globalmente.
# Si process_group_ifs está definida DENTRO de process_json_to_scl,
# no necesitarías global, ya que accedería a la 'data' local.
# Lo más limpio es definir process_group_ifs fuera y pasarle 'data'
# como argumento (como ya se hace). Así que 'global data' aquí es probablemente innecesario.
# Eliminémoslo por ahora y aseguremos que data se pasa a process_group_ifs.
if not os.path.exists(json_filepath): print(f"Error: JSON no encontrado: {json_filepath}"); return
print(f"Cargando JSON desde: {json_filepath}")
try:
with open(json_filepath, "r", encoding="utf-8") as f: data = json.load(f)
except Exception as e: print(f"Error al cargar JSON: {e}"); traceback.print_exc(); return
# --- Carga dinámica de procesadores (sin cambios) ---
script_dir = os.path.dirname(__file__); processors_dir_path = os.path.join(script_dir, 'processors')
processor_map, sorted_processors = load_processors(processors_dir_path)
if not processor_map: print("Error crítico: No se cargaron procesadores. Abortando."); return
# --- Crear mapas de acceso por red (sin cambios) ---
network_access_maps = {}
# ... (logic to populate network_access_maps remains the same) ...
for network in data.get("networks", []):
net_id = network["id"]
current_access_map = {}
# Extraer todos los 'Access' usados en esta red
for instr in network.get("logic", []):
# Revisar Inputs
for _, source in instr.get("inputs", {}).items():
sources_to_check = (source if isinstance(source, list) else ([source] if isinstance(source, dict) else []))
for src in sources_to_check:
if (isinstance(src, dict) and src.get("uid") and src.get("type") in ["variable", "constant"]):
current_access_map[src["uid"]] = src
# Revisar Outputs
for _, dest_list in instr.get("outputs", {}).items():
if isinstance(dest_list, list):
for dest in dest_list:
if (isinstance(dest, dict) and dest.get("uid") and dest.get("type") in ["variable", "constant"]):
current_access_map[dest["uid"]] = dest
network_access_maps[net_id] = current_access_map
# --- Inicializar mapa SymPy y SymbolManager por red ---
# Cada red puede tener su propio contexto de símbolos si es necesario,
# pero un SymbolManager global suele ser suficiente si no hay colisiones graves.
# Usaremos uno global por simplicidad ahora.
symbol_manager = SymbolManager()
sympy_map = {} # Mapa para resultados SymPy intermedios (expresiones)
max_passes = 30
passes = 0
processing_complete = False
print("\n--- Iniciando Bucle de Procesamiento Iterativo (con SymPy y prioridad) ---")
while passes < max_passes and not processing_complete:
passes += 1
made_change_in_base_pass = False # Renombrar: made_change_in_sympy_pass
made_change_in_group_pass = False
# made_change_in_simplify_pass = False # Ya no existe Fase 3
print(f"\n--- Pase {passes} ---")
num_processed_this_pass = 0 # Renombrar: num_sympy_processed_this_pass
num_grouped_this_pass = 0
# num_simplified_this_pass = 0 # Ya no existe Fase 3
# --- FASE 1: Procesadores Base (Ahora usan SymPy) ---
print(f" Fase 1 (SymPy Base - Orden por Prioridad):")
num_sympy_processed_this_pass = 0 # Contador específico
for processor_info in sorted_processors:
current_type_name = processor_info['type_name']
func_to_call = processor_info['func']
for network in data.get("networks", []):
network_id = network["id"]
access_map = network_access_maps.get(network_id, {})
network_logic = network.get("logic", [])
for instruction in network_logic:
instr_uid = instruction.get("instruction_uid")
instr_type_original = instruction.get("type", "Unknown")
# Saltar si ya está procesado con el NUEVO método, es error, o agrupado
if (instr_type_original.endswith(SCL_SUFFIX) # Check new suffix
or "_error" in instr_type_original
or instruction.get("grouped", False)):
continue
# Determinar tipo efectivo (como antes)
lookup_key = instr_type_original.lower()
effective_type_name = lookup_key
if instr_type_original == "Call": # ... (manejo Call FC/FB) ...
block_type = instruction.get("block_type", "").upper()
if block_type == "FC": effective_type_name = "call_fc"
elif block_type == "FB": effective_type_name = "call_fb"
if effective_type_name == current_type_name:
try:
# *** Llamar al procesador refactorizado ***
# Pasa sympy_map y symbol_manager, no scl_map
changed = func_to_call(instruction, network_id, sympy_map, symbol_manager, data) # Pasamos SymbolManager
if changed:
made_change_in_base_pass = True
num_sympy_processed_this_pass += 1
except Exception as e:
print(f"ERROR(SymPy Base) al procesar {instr_type_original} UID {instr_uid}: {e}")
traceback.print_exc()
instruction["scl"] = f"// ERROR en SymPy procesador base: {e}"
instruction["type"] = instr_type_original + "_error"
made_change_in_base_pass = True
print(f" -> {num_sympy_processed_this_pass} instrucciones procesadas con SymPy.")
# --- FASE 2: Agrupación IF (Ahora usa SymPy para simplificar) ---
# Ejecutar si hubo cambios en base o es el primer pase
if made_change_in_base_pass or passes == 1:
print(f" Fase 2 (Agrupación IF con Simplificación):")
num_grouped_this_pass = 0 # Reiniciar contador
for network in data.get("networks", []):
network_id = network["id"]
# access_map = network_access_maps.get(network_id, {}) # No usado directamente por group_ifs
network_logic = network.get("logic", [])
# Iterar sobre instrucciones que *pueden* generar condiciones booleanas
for instruction in network_logic:
# process_group_ifs ahora verifica internamente si la instr. fue procesada
try:
# *** Llamar a process_group_ifs adaptado ***
group_changed = process_group_ifs(instruction, network_id, sympy_map, symbol_manager, data)
if group_changed:
made_change_in_group_pass = True
num_grouped_this_pass += 1
except Exception as e:
print(f"ERROR(GroupLoop) al intentar agrupar desde UID {instruction.get('instruction_uid')}: {e}")
traceback.print_exc()
print(f" -> {num_grouped_this_pass} agrupaciones realizadas.")
# --- FASE 3 Eliminada ---
# --- Comprobar si se completó el procesamiento ---
# Solo considera Fase 1 (SymPy Base) y Fase 2 (Grouping)
if not made_change_in_base_pass and not made_change_in_group_pass:
print(f"\n--- No se hicieron más cambios en el pase {passes}. Proceso iterativo completado. ---")
processing_complete = True
else:
# Mensaje de fin de pase actualizado
print(f"--- Fin Pase {passes}: {num_sympy_processed_this_pass} proc SymPy, {num_grouped_this_pass} agrup. Continuando...")
# --- Comprobar límite de pases ---
if passes == max_passes and not processing_complete:
print(f"\n--- ADVERTENCIA: Límite de {max_passes} pases alcanzado...")
# --- FIN BUCLE ITERATIVO ---
# --- Verificación Final ---
# La lógica aquí podría necesitar ajustes si el sufijo cambió o si el SCL final
# solo se genera en instrucciones terminales.
print("\n--- Verificación Final de Instrucciones No Procesadas ---")
unprocessed_count = 0
unprocessed_details = []
ignored_types = ['raw_scl_chunk', 'unsupported_lang']
for network in data.get("networks", []):
network_id = network.get("id", "Unknown ID")
network_title = network.get("title", f"Network {network_id}")
for instruction in network.get("logic", []):
instr_uid = instruction.get("instruction_uid", "Unknown UID")
instr_type = instruction.get("type", "Unknown Type")
is_grouped = instruction.get("grouped", False)
has_final_scl = bool(instruction.get("scl", "").strip()) and not instruction.get("scl", "").strip().startswith("//")
# Condición revisada: No tiene el sufijo nuevo Y no es error Y no está agrupada Y no es tipo ignorado
# Y ADEMÁS, ¿debería tener SCL final si es una instr. terminal?
# Simplificación: si no tiene sufijo, no es error, no agrupada, no ignorada -> problema
if (not instr_type.endswith(SCL_SUFFIX) and
"_error" not in instr_type and
not is_grouped and
instr_type.lower() not in ignored_types):
unprocessed_count += 1
unprocessed_details.append(
f" - Red '{network_title}' (ID: {network_id}), "
f"Instrucción UID: {instr_uid}, Tipo Original: '{instr_type}'"
)
# Opcional: añadir si tiene SCL o no
# unprocessed_details[-1] += f" (Tiene SCL final: {has_final_scl})"
if unprocessed_count > 0:
print(f"ADVERTENCIA: Se encontraron {unprocessed_count} instrucciones que no fueron procesadas:")
for detail in unprocessed_details: print(detail)
else:
print("INFO: Todas las instrucciones relevantes parecen haber sido procesadas o agrupadas.")
# --- Guardar JSON Final (sin cambios) ---
output_filename = json_filepath.replace("_simplified.json", "_simplified_processed.json")
print(f"\nGuardando JSON procesado en: {output_filename}")
try:
with open(output_filename, "w", encoding="utf-8") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
print("Guardado completado.")
except Exception as e:
print(f"Error Crítico al guardar JSON procesado: {e}")
traceback.print_exc()
# --- Ejecución (igual que antes) ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process simplified JSON to embed SCL logic.")
parser.add_argument(
"source_xml_filepath",
nargs="?",
default="TestLAD.xml",
help="Path to the original source XML file (used to derive JSON input name, default: TestLAD.xml)"
)
args = parser.parse_args()
xml_filename_base = os.path.splitext(os.path.basename(args.source_xml_filepath))[0]
# Usar directorio del script actual si el XML no tiene ruta, o la ruta del XML si la tiene
xml_dir = os.path.dirname(args.source_xml_filepath)
input_dir = xml_dir if xml_dir else os.path.dirname(__file__) # Directorio de entrada/salida
input_json_file = os.path.join(input_dir, f"{xml_filename_base}_simplified.json")
if not os.path.exists(input_json_file):
print(f"Error Fatal: El archivo de entrada JSON simplificado no existe: '{input_json_file}'")
print(f"Asegúrate de haber ejecutado 'x1_to_json.py' primero sobre '{args.source_xml_filepath}'.")
sys.exit(1)
else:
process_json_to_scl(input_json_file)

View File

@ -1,298 +0,0 @@
# x3_generate_scl.py
# -*- coding: utf-8 -*-
import json
import os
import re
import argparse
import sys
import traceback # Importar traceback para errores
# --- Importar Utilidades y Constantes (Asumiendo ubicación) ---
try:
# Intenta importar desde el paquete de procesadores si está estructurado así
from processors.processor_utils import format_variable_name
# Definir SCL_SUFFIX aquí o importarlo si está centralizado
SCL_SUFFIX = "_sympy_processed" # Asegúrate que coincida con x2_process.py
GROUPED_COMMENT = "// Logic included in grouped IF" # Opcional, si se usa para filtrar
except ImportError:
print("Advertencia: No se pudo importar 'format_variable_name' desde processors.processor_utils.")
print("Usando una implementación local básica (¡PUEDE FALLAR CON NOMBRES COMPLEJOS!).")
# Implementación local BÁSICA como fallback (MENOS RECOMENDADA)
def format_variable_name(name):
if not name: return "_INVALID_NAME_"
if name.startswith('"') and name.endswith('"'): return name # Mantener comillas
prefix = "#" if name.startswith("#") else ""
if prefix: name = name[1:]
if name and name[0].isdigit(): name = "_" + name
name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
return prefix + name
SCL_SUFFIX = "_sympy_processed"
GROUPED_COMMENT = "// Logic included in grouped IF"
# --- Función Principal de Generación SCL ---
def generate_scl(processed_json_filepath, output_scl_filepath):
"""Genera un archivo SCL a partir del JSON procesado por x2_process (versión SymPy)."""
if not os.path.exists(processed_json_filepath):
print(f"Error: Archivo JSON procesado no encontrado en '{processed_json_filepath}'")
return
print(f"Cargando JSON procesado desde: {processed_json_filepath}")
try:
with open(processed_json_filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
except Exception as e:
print(f"Error al cargar o parsear JSON: {e}")
traceback.print_exc()
return
# --- Extracción de Información del Bloque ---
block_name = data.get('block_name', 'UnknownBlock')
block_number = data.get('block_number')
block_lang_original = data.get('language', 'LAD') # Lenguaje original
# Determinar tipo de bloque SCL (Asumir FB si no se especifica)
# Idealmente, x1_to_json.py guardaría esto en data['block_type_scl'] = 'FC' o 'FB'
block_type_scl = data.get('block_type_scl', 'FUNCTION_BLOCK')
block_comment = data.get('block_comment', '')
# Usar format_variable_name para el nombre del bloque en SCL
scl_block_name = format_variable_name(block_name)
print(f"Generando SCL para {block_type_scl}: {scl_block_name} (Original: {block_name})")
# --- Identificación de Variables Temporales y Estáticas ---
# La detección basada en regex sobre el SCL final debería seguir funcionando
temp_vars = set()
stat_vars = set()
# Regex mejorado para capturar variables temporales que empiezan con # o _temp_
# y estáticas (si usas un prefijo como 'stat_' o para bits de memoria de flanco)
temp_pattern = re.compile(r'"?#(_temp_[a-zA-Z0-9_]+)"?|"?(_temp_[a-zA-Z0-9_]+)"?') # Captura con o sin #
stat_pattern = re.compile(r'"?(stat_[a-zA-Z0-9_]+)"?') # Para memorias de flanco si usan prefijo 'stat_'
edge_memory_bits = set() # Para detectar bits de memoria de flanco por nombre
for network in data.get('networks', []):
for instruction in network.get('logic', []):
scl_code = instruction.get('scl', '')
# Buscar también en _edge_mem_update_scl si existe
edge_update_code = instruction.get('_edge_mem_update_scl','')
code_to_scan = (scl_code if scl_code else '') + '\n' + (edge_update_code if edge_update_code else '')
if code_to_scan:
# Buscar #_temp_... o _temp_...
found_temps = temp_pattern.findall(code_to_scan)
for temp_tuple in found_temps:
# findall devuelve tuplas por los grupos de captura, tomar el no vacío
temp_name = next((t for t in temp_tuple if t), None)
if temp_name:
temp_vars.add("#"+temp_name if not temp_name.startswith("#") else temp_name) # Asegurar que empiece con #
# Buscar estáticas (ej: stat_...)
found_stats = stat_pattern.findall(code_to_scan)
stat_vars.update(found_stats)
# Identificar explícitamente bits de memoria usados por PBox/NBox
# Asumiendo que el nombre se guarda en el JSON (requiere ajuste en x1/x2)
# if instruction.get("type","").startswith(("PBox", "NBox")):
# mem_bit_info = instruction.get("inputs", {}).get("bit")
# if mem_bit_info and mem_bit_info.get("type") == "variable":
# edge_memory_bits.add(format_variable_name(mem_bit_info.get("name")))
print(f"Variables temporales (#_temp_...) detectadas: {len(temp_vars)}")
# Si se detectan memorias de flanco, añadirlas a stat_vars si no tienen prefijo 'stat_'
# stat_vars.update(edge_memory_bits - stat_vars) # Añadir solo las nuevas
print(f"Variables estáticas (stat_...) detectadas: {len(stat_vars)}")
# --- Construcción del String SCL ---
scl_output = []
# Cabecera del Bloque
scl_output.append(f"// Block Name (Original): {block_name}")
if block_number: scl_output.append(f"// Block Number: {block_number}")
scl_output.append(f"// Original Language: {block_lang_original}")
if block_comment: scl_output.append(f"// Block Comment: {block_comment}")
scl_output.append("")
scl_output.append(f"{block_type_scl} \"{scl_block_name}\"")
scl_output.append("{ S7_Optimized_Access := 'TRUE' }")
scl_output.append("VERSION : 0.1")
scl_output.append("")
# Declaraciones de Interfaz (Implementación básica)
interface_sections = ["Input", "Output", "InOut", "Static", "Temp", "Constant", "Return"]
interface_data = data.get('interface', {})
for section_name in interface_sections:
scl_section_name = section_name
# Ajustar nombres de sección para SCL (Static -> STAT, Temp -> TEMP)
if section_name == "Static": scl_section_name = "STAT"
if section_name == "Temp": scl_section_name = "TEMP" # Usar VAR_TEMP para variables #temp
vars_in_section = interface_data.get(section_name, [])
# No declarar VAR_TEMP aquí, se hará después con las detectadas/originales
if section_name == "Temp": continue
# No declarar VAR_STAT aquí si ya lo hacemos abajo con las detectadas
if section_name == "Static" and stat_vars: continue
if vars_in_section or (section_name == "Static" and stat_vars): # Incluir STAT si hay detectadas
# Usar VAR para Input/Output/InOut/Constant/Return
var_keyword = "VAR" if section_name != "Static" else "VAR_STAT"
scl_output.append(f"{var_keyword}_{section_name.upper()}")
for var in vars_in_section:
var_name = var.get('name')
var_dtype = var.get('datatype', 'VARIANT') # Default a VARIANT
if var_name:
# Usar format_variable_name CORRECTO
scl_name = format_variable_name(var_name)
scl_output.append(f" {scl_name} : {var_dtype};")
# Declarar stat_vars detectadas si esta es la sección STAT
if section_name == "Static" and stat_vars:
for var_name in sorted(list(stat_vars)):
# Asumir Bool para stat_, podría necesitar inferencia
scl_output.append(f" {format_variable_name(var_name)} : Bool; // Auto-detected STAT")
scl_output.append("END_VAR")
scl_output.append("")
# Declaraciones Estáticas (Si no estaban en la interfaz y se detectaron)
# Esto es redundante si la sección VAR_STAT ya se generó arriba
# if stat_vars and not interface_data.get("Static"):
# scl_output.append("VAR_STAT")
# for var_name in sorted(list(stat_vars)):
# scl_output.append(f" {format_variable_name(var_name)} : Bool; // Auto-detected STAT")
# scl_output.append("END_VAR")
# scl_output.append("")
# Declaraciones Temporales (Interfaz Temp + _temp_ detectadas)
scl_output.append("VAR_TEMP")
declared_temps = set()
interface_temps = interface_data.get('Temp', [])
if interface_temps:
for var in interface_temps:
var_name = var.get('name')
var_dtype = var.get('datatype', 'VARIANT')
if var_name:
scl_name = format_variable_name(var_name)
scl_output.append(f" {scl_name} : {var_dtype};")
declared_temps.add(scl_name) # Marcar como declarada
# Declarar las _temp_ generadas si no estaban ya en la interfaz Temp
if temp_vars:
for var_name in sorted(list(temp_vars)):
scl_name = format_variable_name(var_name) # #_temp_...
if scl_name not in declared_temps:
# Inferencia básica de tipo
inferred_type = "Bool" # Asumir Bool para la mayoría de temps de lógica
# Se podría mejorar si los procesadores añadieran info de tipo
scl_output.append(f" {scl_name} : {inferred_type}; // Auto-generated temporary")
declared_temps.add(scl_name)
scl_output.append("END_VAR")
scl_output.append("")
# Cuerpo del Bloque
scl_output.append("BEGIN")
scl_output.append("")
# Iterar por redes y lógica
for i, network in enumerate(data.get('networks', [])):
network_title = network.get('title', f'Network {network.get("id")}')
network_comment = network.get('comment', '')
network_lang = network.get('language', 'LAD') # O el lenguaje original
scl_output.append(f" // Network {i+1}: {network_title} (Original Language: {network_lang})")
if network_comment:
for line in network_comment.splitlines():
scl_output.append(f" // {line}")
scl_output.append("")
network_has_code = False
# Iterar sobre la 'logica' de la red
for instruction in network.get('logic', []):
instruction_type = instruction.get("type", "")
scl_code = instruction.get('scl', "") # Obtener SCL generado por x2
# Saltar instrucciones agrupadas
if instruction.get("grouped", False):
continue
# Escribir SCL si es un tipo procesado y tiene código relevante
# (Ignorar comentarios de depuración de SymPy)
if instruction_type.endswith(SCL_SUFFIX) and scl_code:
is_internal_sympy_comment_only = scl_code.strip().startswith("// SymPy") or \
scl_code.strip().startswith("// PBox SymPy processed") or \
scl_code.strip().startswith("// NBox SymPy processed")
# O podría ser más genérico: ignorar cualquier línea que solo sea comentario SCL
is_only_comment = all(line.strip().startswith("//") for line in scl_code.splitlines())
# Escribir solo si NO es un comentario interno de SymPy O si es un bloque IF (que sí debe escribirse)
if not is_only_comment or scl_code.strip().startswith("IF"):
network_has_code = True
for line in scl_code.splitlines():
# Añadir indentación estándar
scl_output.append(f" {line}")
# Incluir también tipos especiales directamente
elif instruction_type in ["RAW_SCL_CHUNK", "UNSUPPORTED_LANG"] and scl_code:
network_has_code = True
for line in scl_code.splitlines():
scl_output.append(f" {line}") # Indentar
# Podríamos añadir comentarios para errores si se desea
# elif "_error" in instruction_type:
# network_has_code = True
# scl_output.append(f" // ERROR processing instruction UID {instruction.get('instruction_uid')}: {instruction.get('scl', 'No details')}")
if network_has_code:
scl_output.append("") # Línea en blanco después del código de la red
else:
scl_output.append(f" // Network did not produce printable SCL code.")
scl_output.append("")
# Fin del bloque
scl_output.append("END_FUNCTION_BLOCK") # O END_FUNCTION si es FC
# --- Escritura del Archivo SCL ---
print(f"Escribiendo archivo SCL en: {output_scl_filepath}")
try:
with open(output_scl_filepath, 'w', encoding='utf-8') as f:
for line in scl_output:
f.write(line + '\n')
print("Generación de SCL completada.")
except Exception as e:
print(f"Error al escribir el archivo SCL: {e}")
traceback.print_exc()
# --- Ejecución ---
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate final SCL file from processed JSON (SymPy version).")
parser.add_argument(
"source_xml_filepath",
nargs="?",
default="TestLAD.xml",
help="Path to the original source XML file (used to derive input/output names, default: TestLAD.xml)"
)
args = parser.parse_args()
xml_filename_base = os.path.splitext(os.path.basename(args.source_xml_filepath))[0]
# Usar directorio del script si no hay ruta, o la ruta del XML si la tiene
xml_dir = os.path.dirname(args.source_xml_filepath)
base_dir = xml_dir if xml_dir else os.path.dirname(__file__)
input_json_file = os.path.join(base_dir, f"{xml_filename_base}_simplified_processed.json")
output_scl_file = os.path.join(base_dir, f"{xml_filename_base}_simplified_processed.scl")
if not os.path.exists(input_json_file):
print(f"Error: Processed JSON file not found: '{input_json_file}'")
print(f"Ensure 'x2_process.py' ran successfully for '{args.source_xml_filepath}'.")
sys.exit(1)
else:
generate_scl(input_json_file, output_scl_file)

View File

@ -1,87 +1,75 @@
# processors/process_add.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
import re # Importar re si se usa para formateo
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed" # Usar el nuevo sufijo # TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
def process_add(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
"""Genera SCL para Add, simplificando la condición EN.""" SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_add(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Add") instr_type = instruction["type"]
current_type = instruction.get("type","") if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
if current_type.endswith(SCL_SUFFIX) or "_error" in current_type:
return False return False
# Obtener EN (SymPy), IN1, IN2 (SymPy o Constante/String)
en_input = instruction["inputs"].get("en") en_input = instruction["inputs"].get("en")
en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
in1_info = instruction["inputs"].get("in1") in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2") in2_info = instruction["inputs"].get("in2")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
op1_sympy_or_const = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager) in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
op2_sympy_or_const = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager)
# Obtener destino SCL if en_scl is None or in1_scl is None or in2_scl is None:
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=True)
# Verificar dependencias
if sympy_en_expr is None or op1_sympy_or_const is None or op2_sympy_or_const is None or target_scl_name is None:
# print(f"DEBUG Add {instr_uid}: Dependency not ready")
return False return False
# Convertir operandos SymPy/Constante a SCL strings target_scl = get_target_scl_name(
op1_scl = sympy_expr_to_scl(op1_sympy_or_const, symbol_manager) instruction, "out", network_id, default_to_temp=True
op2_scl = sympy_expr_to_scl(op2_sympy_or_const, symbol_manager) )
if target_scl is None:
# Añadir paréntesis si contienen operadores (más seguro para SCL) print(f"Error: Sin destino ADD {instr_uid}")
op1_scl_formatted = f"({op1_scl})" if re.search(r'[+\-*/ ]', op1_scl) else op1_scl instruction["scl"] = f"// ERROR: Add {instr_uid} sin destino"
op2_scl_formatted = f"({op2_scl})" if re.search(r'[+\-*/ ]', op2_scl) else op2_scl instruction["type"] += "_error"
# Generar SCL Core
scl_core = f"{target_scl_name} := {op1_scl_formatted} + {op2_scl_formatted};"
# Aplicar Condición EN (Simplificando EN)
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
# Evitar IF TRUE THEN...
if en_condition_scl == "TRUE":
scl_final = scl_core
# Evitar IF FALSE THEN...
elif en_condition_scl == "FALSE":
scl_final = f"// {instr_type_original} {instr_uid} condition simplified to FALSE."
else:
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# Actualizar instrucción y mapa
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (nombre SCL del destino) y ENO (expresión SymPy)
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = target_scl_name # Guardar nombre del destino (string)
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO
return True return True
# Formatear operandos si son variables
op1 = (
format_variable_name(in1_scl)
if in1_info and in1_info.get("type") == "variable"
else in1_scl
)
op2 = (
format_variable_name(in2_scl)
if in2_info and in2_info.get("type") == "variable"
else in2_scl
)
# Añadir paréntesis si es necesario
op1 = f"({op1})" if " " in op1 and not op1.startswith("(") else op1
op2 = f"({op2})" if " " in op2 and not op2.startswith("(") else op2
scl_core = f"{target_scl} := {op1} + {op2};"
scl_final = (
f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
)
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = target_scl
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
return True
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para el procesador Add.""" """Devuelve la información para el procesador Add."""
# Asegurar que la clave coincida con el tipo en JSON ('add')
return {'type_name': 'add', 'processor_func': process_add, 'priority': 4} return {'type_name': 'add', 'processor_func': process_add, 'priority': 4}

View File

@ -1,118 +1,112 @@
# processors/process_blkmov.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
import re
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed" # Usar el nuevo sufijo # TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
def process_blkmov(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_blkmov(instruction, network_id, scl_map, access_map, data):
""" """
Genera SCL usando BLKMOV directamente como nombre de función, Genera SCL usando BLKMOV directamente como nombre de función,
simplificando la condición EN. sin COUNT y con formato específico, según solicitud del usuario.
ADVERTENCIA: Sintaxis BLKMOV probablemente no compile en TIA estándar. ADVERTENCIA: Es MUY PROBABLE que esto NO compile en TIA Portal estándar,
ya que BLKMOV no es una función SCL y MOVE_BLK requiere COUNT.
""" """
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "BlkMov") # Asegurar que el tipo base sea correcto instr_type = instruction["type"]
current_type = instruction.get("type","") if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
if current_type.endswith(SCL_SUFFIX) or "_error" in current_type: return False # Ya procesado o con error
return False
# --- Obtener Entradas --- # --- Obtener Entradas ---
en_input = instruction["inputs"].get("en") en_input = instruction["inputs"].get("en")
# Obtener EN como expresión SymPy en_scl = (
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
srcblk_info = instruction["inputs"].get("SRCBLK") srcblk_info = instruction["inputs"].get("SRCBLK")
# Obtener nombre RAW de SRCBLK (como se hacía antes, si es necesario para BLKMOV) # ¡IMPORTANTE! Obtenemos el nombre RAW antes de formatearlo para usarlo como pide el usuario
# Este nombre NO pasa por SymPy, se usa directo en el string SCL final
raw_srcblk_name = srcblk_info.get("name") if srcblk_info else None raw_srcblk_name = srcblk_info.get("name") if srcblk_info else None
# Verificar dependencias (EN debe estar resuelto, SRCBLK debe tener nombre) # Verificar dependencias de entrada (solo necesitamos que EN esté resuelto)
if sympy_en_expr is None: if en_scl is None:
# print(f"DEBUG BlkMov {instr_uid}: EN dependency not ready") return False # Dependencia EN no lista
return False
if raw_srcblk_name is None: if raw_srcblk_name is None:
print(f"Error: BLKMOV {instr_uid} sin información válida para SRCBLK.") print(f"Error: BLKMOV {instr_uid} sin información válida para SRCBLK.")
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin SRCBLK válido." instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin SRCBLK válido."
instruction["type"] = instr_type_original + "_error" instruction["type"] += "_error"
return True return True
# --- Obtener Destinos (Salidas) --- # --- Obtener Destinos (Salidas) ---
# RET_VAL (Obtener nombre SCL formateado) # RET_VAL (Usamos get_target_scl_name para manejar variables temporales si es necesario)
retval_target_scl = get_target_scl_name(instruction, "RET_VAL", network_id, default_to_temp=True) retval_target_scl = get_target_scl_name(
if retval_target_scl is None: # get_target_scl_name ya imprime error si falla y default_to_temp=True instruction, "RET_VAL", network_id, default_to_temp=True
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} no pudo generar destino RET_VAL" )
instruction["type"] = instr_type_original + "_error" if retval_target_scl is None:
print(f"Error: BLKMOV {instr_uid} sin destino claro para RET_VAL.")
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin destino RET_VAL"
instruction["type"] += "_error"
return True return True
# DSTBLK (Obtener nombre RAW como antes, si se necesita) # DSTBLK (Obtenemos el nombre RAW para usarlo como pide el usuario)
raw_dstblk_name = None raw_dstblk_name = None
dstblk_output_list = instruction.get("outputs", {}).get("DSTBLK", []) dstblk_output_list = instruction.get("outputs", {}).get("DSTBLK", [])
if dstblk_output_list and isinstance(dstblk_output_list, list) and len(dstblk_output_list) == 1: if dstblk_output_list and isinstance(dstblk_output_list, list) and len(dstblk_output_list) == 1:
dest_access = dstblk_output_list[0] dest_access = dstblk_output_list[0]
if dest_access.get("type") == "variable": if dest_access.get("type") == "variable":
raw_dstblk_name = dest_access.get("name") raw_dstblk_name = dest_access.get("name") # Nombre raw del JSON
# Manejar error si no se encuentra DSTBLK else:
if raw_dstblk_name is None: print(f"Advertencia: Destino DSTBLK de BLKMOV {instr_uid} no es una variable (Tipo: {dest_access.get('type')}).")
else:
print(f"Error: No se encontró un destino único y válido para DSTBLK en BLKMOV {instr_uid}.") print(f"Error: No se encontró un destino único y válido para DSTBLK en BLKMOV {instr_uid}.")
if raw_dstblk_name is None:
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin destino DSTBLK válido." instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin destino DSTBLK válido."
instruction["type"] = instr_type_original + "_error" instruction["type"] += "_error"
return True return True
# --- Formateo especial (mantener nombres raw si es necesario para BLKMOV) --- # --- Formateo especial para SRCBLK/DSTBLK como pidió el usuario ---
# Estos nombres van directo al string SCL, no necesitan pasar por SymPy # Asume formato "DB".Variable o "Struct".Variable del JSON y lo mantiene
srcblk_final_str = raw_srcblk_name # Asumiendo que ya viene con comillas si las necesita # (Esto anula la limpieza normal de format_variable_name para estos parámetros)
dstblk_final_str = raw_dstblk_name # Asumiendo que ya viene con comillas si las necesita srcblk_final_str = raw_srcblk_name if raw_srcblk_name else "_ERROR_SRC_"
dstblk_final_str = raw_dstblk_name if raw_dstblk_name else "_ERROR_DST_"
# --- Generar SCL Core (Usando la sintaxis no estándar BLKMOV) --- # --- Generar SCL Exacto Solicitado ---
scl_core = ( scl_core = (
f"{retval_target_scl} := BLKMOV(SRCBLK := {srcblk_final_str}, " f"{retval_target_scl} := BLKMOV(SRCBLK := {srcblk_final_str}, "
f"DSTBLK => {dstblk_final_str}); " # Usar => para Out/InOut f"DSTBLK => {dstblk_final_str}); "
f"// ADVERTENCIA: BLKMOV usado directamente, probablemente no compile!" f"// ADVERTENCIA: BLKMOV usado directamente, probablemente no compile!"
) )
# --- Aplicar Condición EN (Simplificando EN) --- # Añadir condición EN (usando la representación SCL obtenida para EN)
scl_final = "" scl_final = (
if sympy_en_expr != sympy.true: f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
try: )
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
# Evitar IF TRUE/FALSE THEN... # --- Actualizar Instrucción y Mapa SCL ---
if en_condition_scl == "TRUE": instruction["scl"] = scl_final
scl_final = scl_core instruction["type"] = instr_type + SCL_SUFFIX
elif en_condition_scl == "FALSE":
scl_final = f"// {instr_type_original} {instr_uid} condition simplified to FALSE."
else:
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# --- Actualizar Instrucción y Mapa SymPy --- # Propagar ENO (igual que EN)
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar ENO (expresión SymPy)
map_key_eno = (network_id, instr_uid, "eno") map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr scl_map[map_key_eno] = en_scl
# Propagar el valor de retorno (nombre SCL string del destino de RET_VAL) # Propagar el valor de retorno (el contenido de la variable asignada a RET_VAL)
map_key_ret_val = (network_id, instr_uid, "RET_VAL") map_key_ret_val = (network_id, instr_uid, "RET_VAL")
sympy_map[map_key_ret_val] = retval_target_scl scl_map[map_key_ret_val] = retval_target_scl # El valor es lo que sea que se asigne
return True return True
# ... (Asegúrate de que esta función está registrada en processor_map como antes) ...
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para el procesador BLKMOV.""" """Devuelve la información para el procesador BLKMOV."""
# Asegurarse que el type_name coincida con el JSON ('blkmov' parece probable) # Asumiendo que 'BLKMOV' es el type en el JSON simplificado
return {'type_name': 'blkmov', 'processor_func': process_blkmov, 'priority': 6} return {'type_name': 'blkmov', 'processor_func': process_blkmov, 'priority': 6}

View File

@ -1,130 +1,140 @@
# processors/process_call.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
# Asumiendo que estas funciones ahora existen y están adaptadas
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager # Necesitamos pasar el symbol_manager
# Definir sufijo globalmente o importar # TODO: Import necessary functions from processor_utils
SCL_SUFFIX = "_sympy_processed" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
def process_call(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_call(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # Tipo antes de añadir sufijo instr_type = instruction.get("type", "") # Usar get con default
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
block_name = instruction.get("block_name", f"UnknownCall_{instr_uid}") block_name = instruction.get("block_name", f"UnknownCall_{instr_uid}")
block_type = instruction.get("block_type") # FC, FB block_type = instruction.get("block_type") # FC, FB
instance_db = instruction.get("instance_db") # Nombre del DB de instancia (para FB) instance_db = instruction.get("instance_db") # Nombre del DB de instancia (para FB)
# Formatear nombres SCL (para la llamada final) # Formatear nombres
block_name_scl = format_variable_name(block_name) block_name_scl = format_variable_name(block_name)
instance_db_scl = format_variable_name(instance_db) if instance_db else None instance_db_scl = format_variable_name(instance_db) if instance_db else None
# --- Manejo de EN --- # --- Manejo de EN ---
en_input = instruction["inputs"].get("en") en_input = instruction["inputs"].get("en")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if sympy_en_expr is None: if en_input
# print(f"DEBUG Call {instr_uid}: EN dependency not ready.") else "TRUE"
)
if en_scl is None:
return False # Dependencia EN no resuelta return False # Dependencia EN no resuelta
# --- Procesar Parámetros de Entrada --- # --- Procesar Parámetros de Entrada/Salida ---
# Necesitamos iterar sobre los pines definidos en la interfaz del bloque llamado.
# Esta información no está directamente en la instrucción 'Call' del JSON simplificado.
# ¡Limitación! Sin la interfaz del bloque llamado, solo podemos manejar EN/ENO
# y asumir una llamada sin parámetros o con parámetros conectados implícitamente.
# Solución temporal: Buscar conexiones en 'inputs' y 'outputs' que NO sean 'en'/'eno'
# y construir la llamada basándose en eso. Esto es muy heurístico.
scl_call_params = [] scl_call_params = []
processed_inputs = {"en"} processed_inputs = {"en"} # Marcar 'en' como ya procesado
dependencies_resolved = True for pin_name, source_info in instruction.get("inputs", {}).items():
# Ordenar para consistencia
input_pin_names = sorted(instruction.get("inputs", {}).keys())
for pin_name in input_pin_names:
if pin_name not in processed_inputs: if pin_name not in processed_inputs:
source_info = instruction["inputs"][pin_name] param_scl = get_scl_representation(
# Obtener la representación de la fuente (puede ser SymPy o Constante/String) source_info, network_id, scl_map, access_map
source_sympy_or_const = get_sympy_representation(source_info, network_id, sympy_map, symbol_manager) )
if param_scl is None:
if source_sympy_or_const is None: # print(f"DEBUG: Call {instr_uid} esperando parámetro de entrada {pin_name}")
# print(f"DEBUG Call {instr_uid}: Input param '{pin_name}' dependency not ready.") return False # Dependencia de parámetro no resuelta
dependencies_resolved = False # Formatear si es variable
break # Salir si una dependencia no está lista param_scl_formatted = (
format_variable_name(param_scl)
# Convertir la expresión/constante a SCL para la llamada if source_info.get("type") == "variable"
# Simplificar ANTES de convertir? Probablemente no necesario para parámetros de entrada else param_scl
# a menos que queramos optimizar el valor pasado. Por ahora, convertir directo. )
param_scl_value = sympy_expr_to_scl(source_sympy_or_const, symbol_manager) scl_call_params.append(
f"{format_variable_name(pin_name)} := {param_scl_formatted}"
# El nombre del pin SÍ necesita formateo )
pin_name_scl = format_variable_name(pin_name)
scl_call_params.append(f"{pin_name_scl} := {param_scl_value}")
processed_inputs.add(pin_name) processed_inputs.add(pin_name)
if not dependencies_resolved: # Procesar parámetros de salida (asignaciones después de la llamada o pasados como VAR_IN_OUT/VAR_OUTPUT)
return False # Esto es aún más complejo. SCL normalmente asigna salidas después o usa punteros/referencias.
# Simplificación: Asumir que las salidas se manejan por asignación posterior si es necesario,
# o que son VAR_OUTPUT y se acceden como instancia.salida.
# Por ahora, no generamos asignaciones explícitas para las salidas aquí.
# --- Construcción de la Llamada SCL (similar a antes) --- # --- Construcción de la Llamada SCL ---
scl_call_body = "" scl_call_body = ""
param_string = ", ".join(scl_call_params) param_string = ", ".join(scl_call_params)
if block_type == "FB": if block_type == "FB":
if not instance_db_scl: if not instance_db_scl:
print(f"Error: Call FB '{block_name_scl}' (UID {instr_uid}) sin instancia.") print(
f"Error: Llamada a FB '{block_name_scl}' (UID {instr_uid}) sin DB de instancia especificado."
)
instruction["scl"] = f"// ERROR: FB Call {block_name_scl} sin instancia" instruction["scl"] = f"// ERROR: FB Call {block_name_scl} sin instancia"
instruction["type"] = f"Call_FB_error" instruction["type"] = "Call_FB_error"
return True return True # Procesado con error
# Llamada a FB con DB de instancia
scl_call_body = f"{instance_db_scl}({param_string});" scl_call_body = f"{instance_db_scl}({param_string});"
elif block_type == "FC": elif block_type == "FC":
# Llamada a FC
scl_call_body = f"{block_name_scl}({param_string});" scl_call_body = f"{block_name_scl}({param_string});"
else: else:
print(f"Advertencia: Tipo de bloque no soportado para Call UID {instr_uid}: {block_type}") print(
f"Advertencia: Tipo de bloque no soportado para Call UID {instr_uid}: {block_type}"
)
scl_call_body = f"// ERROR: Call a bloque tipo '{block_type}' no soportado: {block_name_scl}" scl_call_body = f"// ERROR: Call a bloque tipo '{block_type}' no soportado: {block_name_scl}"
instruction["type"] = f"Call_{block_type}_error" # Marcar como error instruction["type"] = f"Call_{block_type}_error" # Marcar como error parcial
# --- Aplicar Condición EN (usando la expresión SymPy EN) --- # --- Aplicar Condición EN ---
scl_final = "" scl_final = ""
if sympy_en_expr != sympy.true: if en_scl != "TRUE":
# Simplificar la condición EN ANTES de convertirla a SCL # Indentar la llamada dentro del IF
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for Call {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_call = "\n".join([f" {line}" for line in scl_call_body.splitlines()]) indented_call = "\n".join([f" {line}" for line in scl_call_body.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_call}\nEND_IF;" scl_final = f"IF {en_scl} THEN\n{indented_call}\nEND_IF;"
else: else:
scl_final = scl_call_body scl_final = scl_call_body
# --- Actualizar Instrucción y Mapa SymPy --- # --- Actualizar JSON y Mapa SCL ---
instruction["scl"] = scl_final # Guardar el SCL final generado instruction["scl"] = scl_final
instruction["type"] = (f"Call_{block_type}{SCL_SUFFIX}" if "_error" not in instruction["type"] else instruction["type"]) instruction["type"] = (
f"Call_{block_type}_scl"
if "_error" not in instruction["type"]
else instruction["type"]
)
# Actualizar sympy_map con el estado ENO (es la expresión SymPy de EN) # Actualizar scl_map con el estado ENO (igual a EN para llamadas simples sin manejo explícito de ENO)
map_key_eno = (network_id, instr_uid, "eno") map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO scl_map[map_key_eno] = en_scl
# Propagar valores de salida (requiere info de interfaz o heurística) # Propagar valores de salida (si pudiéramos determinarlos)
# Si se sabe que hay una salida 'MyOutput', se podría añadir su SCL al mapa # Ejemplo: Si supiéramos que hay una salida 'Out1' de tipo INT
# Ejemplo MUY simplificado: # map_key_out1 = (network_id, instr_uid, "Out1")
# for pin_name, dest_list in instruction.get("outputs", {}).items():
# if pin_name != 'eno' and dest_list: # Asumir que hay un destino
# map_key_out = (network_id, instr_uid, pin_name)
# if block_type == "FB" and instance_db_scl: # if block_type == "FB" and instance_db_scl:
# sympy_map[map_key_out] = f"{instance_db_scl}.{format_variable_name(pin_name)}" # Guardar el *string* de acceso SCL # scl_map[map_key_out1] = f"{instance_db_scl}.Out1" # Acceso a salida de instancia
# # Para FCs es más complejo, necesitaría asignación explícita a temp # else:
# # else: # FC output -> necesita temp var # # Para FCs, necesitaríamos una variable temporal o asignación explícita
# # temp_var = generate_temp_var_name(...) # temp_out1 = generate_temp_var_name(network_id, instr_uid, "Out1")
# # sympy_map[map_key_out] = temp_var # # Modificar scl_call_body para incluir la asignación: Out1 => temp_out1
# scl_map[map_key_out1] = temp_out1
return True return True
# --- Procesador de Temporizadores (TON, TOF) ---
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para las llamadas a FC y FB.""" """Devuelve la información para las llamadas a FC y FB."""
# Esta función maneja tanto FC como FB. El despachador en x2_process.py
# usará 'call_fc' o 'call_fb' como clave basada en block_type.
return [ return [
{'type_name': 'call_fc', 'processor_func': process_call, 'priority': 6}, {'type_name': 'call_fc', 'processor_func': process_call, 'priority': 6},
{'type_name': 'call_fb', 'processor_func': process_call, 'priority': 6} {'type_name': 'call_fb', 'processor_func': process_call, 'priority': 6}

View File

@ -1,81 +1,78 @@
# processors/process_coil.py # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_coil(instruction, network_id, sympy_map, symbol_manager, data): # TODO: Import necessary functions from processor_utils
"""Genera la asignación SCL para Coil, simplificando la entrada SymPy.""" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_coil(instruction, network_id, scl_map, access_map, data):
"""Genera la asignación para Coil. Si la entrada viene de PBox/NBox,
añade la actualización de memoria del flanco DESPUÉS de la asignación."""
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Coil") instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False return False
# Get input expression from SymPy map
coil_input_info = instruction["inputs"].get("in") coil_input_info = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(coil_input_info, network_id, sympy_map, symbol_manager) operand_info = instruction["inputs"].get("operand")
# Get target variable SCL name in_rlo_scl = get_scl_representation(coil_input_info, network_id, scl_map, access_map)
target_scl_name = get_target_scl_name(instruction, "operand", network_id, default_to_temp=False) # Coil must have explicit target operand_scl = get_scl_representation(operand_info, network_id, scl_map, access_map)
# Check dependencies if in_rlo_scl is None or operand_scl is None: return False
if sympy_expr_in is None:
# print(f"DEBUG Coil {instr_uid}: Input dependency not ready.")
return False
if target_scl_name is None:
print(f"Error: Coil {instr_uid} operando no es variable o falta info.")
instruction["scl"] = f"// ERROR: Coil {instr_uid} operando no es variable."
instruction["type"] = instr_type_original + "_error"
return True # Processed with error
# *** Perform Simplification *** if not (operand_info and operand_info.get("type") == "variable"):
try: instruction["scl"] = f"// ERROR: Coil {instr_uid} operando no es variable o falta info"
#simplified_expr = sympy.simplify_logic(sympy_expr_in, force=False) instruction["type"] = instr_type + "_error"
#simplified_expr = sympy_expr_in return True
simplified_expr = sympy.logic.boolalg.to_dnf(sympy_expr_in, simplify=True)
except Exception as e:
print(f"Error during SymPy simplification for Coil {instr_uid}: {e}")
simplified_expr = sympy_expr_in # Fallback to original expression
# *** Convert simplified expression back to SCL string *** operand_scl_formatted = format_variable_name(operand_scl)
condition_scl = sympy_expr_to_scl(simplified_expr, symbol_manager) if in_rlo_scl == "(TRUE)": in_rlo_scl = "TRUE"
elif in_rlo_scl == "(FALSE)": in_rlo_scl = "FALSE"
# Generate the final SCL assignment # Generar la asignación SCL principal de la bobina
scl_assignment = f"{target_scl_name} := {condition_scl};" scl_assignment = f"{operand_scl_formatted} := {in_rlo_scl};"
scl_final = scl_assignment scl_final = scl_assignment # Inicializar SCL final
# --- Handle Edge Detector Memory Update (Logic similar to before) --- # --- Lógica para añadir actualización de memoria de flancos ---
# Check if input comes from PBox/NBox and append memory update
mem_update_scl_combined = None mem_update_scl_combined = None
if isinstance(coil_input_info, dict) and coil_input_info.get("type") == "connection": if isinstance(coil_input_info, dict) and coil_input_info.get("type") == "connection":
source_uid = coil_input_info.get("source_instruction_uid") source_uid = coil_input_info.get("source_instruction_uid")
source_pin = coil_input_info.get("source_pin") source_pin = coil_input_info.get("source_pin")
# Buscar la instrucción fuente PBox/NBox
source_instruction = None source_instruction = None
network_logic = next((net["logic"] for net in data["networks"] if net["id"] == network_id), []) network_logic = next((net["logic"] for net in data["networks"] if net["id"] == network_id), [])
for instr in network_logic: for instr in network_logic:
if instr.get("instruction_uid") == source_uid: if instr.get("instruction_uid") == source_uid:
source_instruction = instr source_instruction = instr
break break
if source_instruction: if source_instruction:
# Check for the original type before suffix was added source_type = source_instruction.get("type","").replace('_scl','').replace('_error','')
orig_source_type = source_instruction.get("type", "").replace(SCL_SUFFIX, '').replace('_error', '') # Si la fuente es PBox o NBox y tiene el campo temporal con la actualización
if orig_source_type in ["PBox", "NBox"] and '_edge_mem_update_scl' in source_instruction: if source_type in ["PBox", "NBox"] and '_edge_mem_update_scl' in source_instruction:
mem_update_scl_combined = source_instruction.get('_edge_mem_update_scl') mem_update_scl_combined = source_instruction.get('_edge_mem_update_scl') # Obtener update+comment
if mem_update_scl_combined: if mem_update_scl_combined:
# Añadir la actualización DESPUÉS de la asignación de la bobina, USANDO \n
scl_final = f"{scl_assignment}\n{mem_update_scl_combined}" scl_final = f"{scl_assignment}\n{mem_update_scl_combined}"
# Clear the source SCL? # Marcar la instrucción PBox/NBox para que x3 no escriba su SCL (que ahora está vacío/comentario)
source_instruction['scl'] = f"// Edge Logic handled by Coil {instr_uid}" source_instruction['scl'] = f"// Logic moved to Coil {instr_uid}" # Actualizar PBox/NBox SCL
# Update instruction
instruction["scl"] = scl_final instruction["scl"] = scl_final
instruction["type"] = instr_type_original + SCL_SUFFIX instruction["type"] = instr_type + SCL_SUFFIX
# Coil typically doesn't output to scl_map
return True return True
# EN x2_process.py, junto a otras funciones process_xxx
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para el procesador Coil.""" """Devuelve la información para el procesador Coil."""

View File

@ -1,87 +1,81 @@
# processors/process_comparison.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
from .processor_utils import get_sympy_representation, format_variable_name # No necesita sympy_expr_to_scl aquí
from .symbol_manager import SymbolManager # Necesita acceso al manager
SCL_SUFFIX = "_sympy_processed"
def process_comparison(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_comparison(instruction, network_id, scl_map, access_map, data):
""" """
Genera la expresión SymPy para Comparadores (GT, LT, GE, LE, NE). Genera la expresión SCL para Comparadores (GT, LT, GE, LE, NE).
El resultado se propaga por sympy_map['out']. El resultado se propaga por scl_map['out'].
""" """
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # GT, LT, GE, LE, NE instr_type = instruction["type"] # GT, LT, GE, LE, NE
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
# Mapa de tipos a funciones/clases SymPy Relational # Mapa de tipos a operadores SCL
# Nota: Asegúrate de que los tipos coincidan (ej. si son números o booleanos) op_map = {"GT": ">", "LT": "<", "GE": ">=", "LE": "<=", "NE": "<>"}
op_map = { scl_operator = op_map.get(instr_type)
"GT": sympy.Gt, # Greater Than > if not scl_operator:
"LT": sympy.Lt, # Less Than < instruction["scl"] = f"// ERROR: Tipo de comparación no soportado: {instr_type}"
"GE": sympy.Ge, # Greater or Equal >= instruction["type"] += "_error"
"LE": sympy.Le, # Less or Equal <=
"NE": sympy.Ne # Not Equal <> (sympy.Ne maneja esto)
}
sympy_relation_func = op_map.get(instr_type_original.upper())
if not sympy_relation_func:
instruction["scl"] = f"// ERROR: Tipo de comparación no soportado para SymPy: {instr_type_original}"
instruction["type"] = instr_type_original + "_error"
return True return True
# Obtener operandos como expresiones SymPy o constantes/strings # Obtener operandos
in1_info = instruction["inputs"].get("in1") in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2") in2_info = instruction["inputs"].get("in2")
op1_sympy = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager) in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
op2_sympy = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager) in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
# Obtener 'pre' (RLO anterior) como expresión SymPy if in1_scl is None or in2_scl is None:
pre_input = instruction["inputs"].get("pre") # Asumiendo que 'pre' es la entrada RLO return False # Dependencias no listas
sympy_pre_rlo = get_sympy_representation(pre_input, network_id, sympy_map, symbol_manager) if pre_input else sympy.true
# Verificar dependencias # Formatear operandos si son variables
if op1_sympy is None or op2_sympy is None or sympy_pre_rlo is None: op1 = format_variable_name(in1_scl) if in1_info and in1_info.get("type") == "variable" else in1_scl
# print(f"DEBUG Comparison {instr_uid}: Dependency not ready") op2 = format_variable_name(in2_scl) if in2_info and in2_info.get("type") == "variable" else in2_scl
return False
# Crear la expresión de comparación SymPy # Añadir paréntesis si contienen espacios (poco probable tras formatear)
try: op1 = f"({op1})" if " " in op1 and not op1.startswith("(") else op1
# Convertir constantes string a número si es posible (Sympy puede necesitarlo) op2 = f"({op2})" if " " in op2 and not op2.startswith("(") else op2
# Esto es heurístico y puede fallar. Mejor si los tipos son conocidos.
op1_eval = sympy.sympify(op1_sympy) if isinstance(op1_sympy, str) else op1_sympy
op2_eval = sympy.sympify(op2_sympy) if isinstance(op2_sympy, str) else op2_sympy
comparison_expr = sympy_relation_func(op1_eval, op2_eval)
except (SyntaxError, TypeError, ValueError) as e:
print(f"Error creating SymPy comparison for {instr_uid}: {e}")
instruction["scl"] = f"// ERROR creando expr SymPy Comparison {instr_uid}: {e}"
instruction["type"] = instr_type_original + "_error"
return True
# Guardar resultado en el mapa para 'out' (es una expresión booleana SymPy) comparison_scl = f"{op1} {scl_operator} {op2}"
# Guardar resultado en el mapa para 'out'
map_key_out = (network_id, instr_uid, "out") map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = comparison_expr scl_map[map_key_out] = f"({comparison_scl})" # Poner paréntesis por seguridad
# Manejar entrada 'pre'/RLO -> ENO (como en EQ)
pre_input = instruction["inputs"].get("pre") # Asumir 'pre' como en EQ
en_scl = get_scl_representation(pre_input, network_id, scl_map, access_map) if pre_input else "TRUE"
if en_scl is None:
return False # Dependencia 'pre'/'en' no lista
# Guardar el RLO de entrada ('pre') como ENO en el mapa SymPy
map_key_eno = (network_id, instr_uid, "eno") map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_pre_rlo scl_map[map_key_eno] = en_scl
# Marcar como procesado, SCL principal es solo comentario instruction["scl"] = f"// Comparison {instr_type} {instr_uid}: {comparison_scl}"
instruction["scl"] = f"// SymPy Comparison {instr_type_original}: {comparison_expr}" # Comentario opcional instruction["type"] = instr_type + SCL_SUFFIX
instruction["type"] = instr_type_original + SCL_SUFFIX
return True return True
# --- Procesador de Matemáticas (ADD ya existe, añadir otros) ---
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para los comparadores (excepto EQ, que debe ser similar).""" """Devuelve la información para los comparadores (excepto EQ)."""
# Esta función maneja múltiples tipos de comparación.
return [ return [
{'type_name': 'gt', 'processor_func': process_comparison, 'priority': 2}, {'type_name': 'gt', 'processor_func': process_comparison, 'priority': 2}, # >
{'type_name': 'lt', 'processor_func': process_comparison, 'priority': 2}, {'type_name': 'lt', 'processor_func': process_comparison, 'priority': 2}, # <
{'type_name': 'ge', 'processor_func': process_comparison, 'priority': 2}, {'type_name': 'ge', 'processor_func': process_comparison, 'priority': 2}, # >=
{'type_name': 'le', 'processor_func': process_comparison, 'priority': 2}, {'type_name': 'le', 'processor_func': process_comparison, 'priority': 2}, # <=
{'type_name': 'ne', 'processor_func': process_comparison, 'priority': 2} {'type_name': 'ne', 'processor_func': process_comparison, 'priority': 2} # <>
# Asegúrate de tener también un procesador para 'eq' usando sympy.Eq
] ]

View File

@ -1,60 +1,73 @@
# processors/process_contact.py # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
from .processor_utils import get_sympy_representation, format_variable_name # Use new util
from .symbol_manager import SymbolManager, extract_plc_variable_name # Need symbol manager access
# Define SCL_SUFFIX or import if needed globally
SCL_SUFFIX = "_sympy_processed" # Indicate processing type
def process_contact(instruction, network_id, sympy_map, symbol_manager, data): # Pass symbol_manager # TODO: Import necessary functions from processor_utils
"""Genera la expresión SymPy para Contact (normal o negado).""" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_contact(instruction, network_id, scl_map, access_map, data):
"""Traduce Contact (normal o negado) a una expresión booleana SCL."""
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Contact") instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
# Check if already processed with the new method
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False return False
# --- INICIO LEER NEGACIÓN ---
# Verificar si el pin 'operand' está marcado como negado en el JSON
is_negated = instruction.get("negated_pins", {}).get("operand", False) is_negated = instruction.get("negated_pins", {}).get("operand", False)
# --- FIN LEER NEGACIÓN ---
# print(f"DEBUG: Intentando procesar CONTACT{' (N)' if is_negated else ''} - UID: {instr_uid} en Red: {network_id}")
# Get incoming SymPy expression (RLO)
in_input = instruction["inputs"].get("in") in_input = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(in_input, network_id, sympy_map, symbol_manager) in_rlo_scl = (
"TRUE"
if in_input is None
else get_scl_representation(in_input, network_id, scl_map, access_map)
)
operand_scl = get_scl_representation(
instruction["inputs"].get("operand"), network_id, scl_map, access_map
)
# Get operand SymPy Symbol if in_rlo_scl is None or operand_scl is None:
operand_info = instruction["inputs"].get("operand") return False
operand_plc_name = extract_plc_variable_name(operand_info)
sympy_symbol_operand = symbol_manager.get_symbol(operand_plc_name) if operand_plc_name else None
# Check dependencies # Usar is_negated para aplicar NOT
if sympy_expr_in is None or sympy_symbol_operand is None: term = f"NOT {operand_scl}" if is_negated else operand_scl
# print(f"DEBUG Contact {instr_uid}: Dependency not ready (In: {sympy_expr_in is not None}, Op: {sympy_symbol_operand is not None})") if not (term.startswith('"') and term.endswith('"')):
return False # Dependencies not ready # Añadir paréntesis si es NOT o si contiene espacios/operadores
if is_negated or (
" " in term and not (term.startswith("(") and term.endswith(")"))
):
term = f"({term})"
# Apply negation using SymPy new_rlo_scl = (
current_term = sympy.Not(sympy_symbol_operand) if is_negated else sympy_symbol_operand term
if in_rlo_scl == "TRUE"
# Combine with previous RLO using SymPy else (
# Simplify common cases: TRUE AND X -> X f"({in_rlo_scl}) AND {term}"
if sympy_expr_in == sympy.true: if ("AND" in in_rlo_scl or "OR" in in_rlo_scl)
sympy_expr_out = current_term and not (in_rlo_scl.startswith("(") and in_rlo_scl.endswith(")"))
else: else f"{in_rlo_scl} AND {term}"
# Could add FALSE AND X -> FALSE optimization here too )
sympy_expr_out = sympy.And(sympy_expr_in, current_term) )
# Store the resulting SymPy expression object in the map
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = sympy_expr_out
# Mark instruction as processed (SCL field is now less relevant here)
instruction["scl"] = f"// SymPy Contact: {sympy_expr_out}" # Optional debug comment
instruction["type"] = instr_type_original + SCL_SUFFIX # Use the new suffix
# Contact doesn't usually have ENO, it modifies the RLO ('out')
map_key = (network_id, instr_uid, "out")
scl_map[map_key] = new_rlo_scl
instruction["scl"] = f"// RLO: {new_rlo_scl}"
instruction["type"] = instr_type + SCL_SUFFIX
return True return True
# --- process_edge_detector MODIFICADA ---
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para el procesador Contact.""" """Devuelve la información para el procesador Contact."""
# Ensure 'data' argument is added if needed by the processor function signature change
return {'type_name': 'contact', 'processor_func': process_contact, 'priority': 1} return {'type_name': 'contact', 'processor_func': process_contact, 'priority': 1}

View File

@ -1,89 +1,80 @@
# processors/process_convert.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_convert(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
"""Genera SCL para Convert, tratando la conversión como una asignación.""" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_convert(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Convert") instr_type = instruction["type"]
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
# Obtener EN y IN
en_input = instruction["inputs"].get("en") en_input = instruction["inputs"].get("en")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
in_info = instruction["inputs"].get("in") in_info = instruction["inputs"].get("in")
sympy_or_const_in = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager) in_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
# Obtener destino SCL if en_scl is None or in_scl is None:
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=True) return False # Esperar si dependencias no listas
# Verificar dependencias target_scl = get_target_scl_name(
if sympy_en_expr is None or sympy_or_const_in is None or target_scl_name is None: instruction, "out", network_id, default_to_temp=True
return False )
if target_scl is None:
print(f"Error: Sin destino claro para CONVERT {instr_uid}")
instruction["scl"] = f"// ERROR: Convert {instr_uid} sin destino"
instruction["type"] += "_error"
return True # Procesado con error
# Convertir la entrada (SymPy o Constante) a SCL # Formatear entrada si es variable
# La simplificación aquí no suele aplicar a la conversión en sí, in_scl_formatted = (
# pero sí podría aplicar a la condición EN. format_variable_name(in_scl)
input_scl = sympy_expr_to_scl(sympy_or_const_in, symbol_manager) if in_info and in_info.get("type") == "variable"
else in_scl
)
# Determinar el tipo de destino (esto sigue siendo un desafío sin info completa) # Determinar el tipo de destino (simplificado, necesitaría info del XML original)
# Usaremos funciones de conversión SCL explícitas si podemos inferirlas. # Asumimos que el tipo está en TemplateValues o inferirlo del nombre/contexto
target_type_hint = instruction.get("template_values", {}).get("destType", "").upper() # Ejemplo target_type = instruction.get("template_values", {}).get(
source_type_hint = "" # Necesitaríamos info del tipo de origen "destType", "VARIANT"
conversion_func_name = None ) # Ejemplo, ajustar según XML real
conversion_func = f"{target_type}_TO_" # Necesita el tipo de origen también
# Esta parte es compleja sin saber los tipos exactos. Usaremos una conversión genérica o MOVE.
# Para una conversión real, necesitaríamos algo como:
# conversion_expr = f"CONVERT(IN := {in_scl_formatted}, OUT => {target_scl})" # Sintaxis inventada
# O usar funciones específicas: INT_TO_REAL, etc.
# Heurística MUY básica (necesita mejorar con info de tipos real) # Simplificación: Usar asignación directa (MOVE implícito) o función genérica si existe
if target_type_hint and source_type_hint and target_type_hint != source_type_hint: # Asumiremos asignación directa por ahora.
conversion_func_name = f"{source_type_hint}_TO_{target_type_hint}" conversion_expr = in_scl_formatted
scl_core = f"{target_scl} := {conversion_expr};"
# Generar SCL Core # Añadir IF EN si es necesario
if conversion_func_name: scl_final = (
# Usar función explícita si la inferimos f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
scl_core = f"{target_scl_name} := {conversion_func_name}({input_scl});" )
else:
# Asignación directa (MOVE implícito) si no hay conversión clara
# ADVERTENCIA: Esto puede causar errores de tipo en el PLC si los tipos no coinciden.
scl_core = f"{target_scl_name} := {input_scl};"
if target_type_hint: # Añadir comentario si al menos conocemos el destino
scl_core += f" // TODO: Verify implicit conversion to {target_type_hint}"
instruction["scl"] = scl_final
# Aplicar Condición EN (Simplificando EN) instruction["type"] = instr_type + SCL_SUFFIX
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for Convert {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# Actualizar instrucción y mapa
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (el contenido del destino) y ENO
map_key_out = (network_id, instr_uid, "out") map_key_out = (network_id, instr_uid, "out")
# Guardar el *nombre* SCL del destino en el mapa, ya que contiene el valor scl_map[map_key_out] = target_scl # El valor de salida es el contenido del destino
# O podríamos crear un símbolo SymPy para ello si fuera necesario aguas abajo? Por ahora, string.
sympy_map[map_key_out] = target_scl_name
map_key_eno = (network_id, instr_uid, "eno") map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO scl_map[map_key_eno] = en_scl # ENO sigue a EN
return True return True
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para el procesador Convert.""" """Devuelve la información para el procesador Convert."""

View File

@ -1,108 +1,92 @@
# processors/process_counter.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_counter(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_counter(instruction, network_id, scl_map, access_map, data):
""" """
Genera SCL para Contadores (CTU, CTD, CTUD). Genera SCL para Contadores (CTU, CTD, CTUD).
Requiere datos de instancia (DB o STAT). Requiere datos de instancia (DB o STAT).
""" """
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # CTU, CTD, CTUD instr_type = instruction["type"] # CTU, CTD, CTUD
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
# 1. Definir pines de entrada esperados # 1. Obtener Inputs (varía según tipo)
input_pins_map = { params = []
"CTU": ["CU", "R", "PV"], resolved = True
"CTD": ["CD", "LD", "PV"],
"CTUD": ["CU", "CD", "R", "LD", "PV"]
}
input_pins = input_pins_map.get(instr_type_original.upper())
if not input_pins:
instruction["scl"] = f"// ERROR: Tipo de contador no soportado: {instr_type_original}"
instruction["type"] = instr_type_original + "_error"
return True
# 2. Procesar Parámetros de Entrada input_pins = []
scl_call_params = [] if instr_type == "CTU": input_pins = ["CU", "R", "PV"]
dependencies_resolved = True elif instr_type == "CTD": input_pins = ["CD", "LD", "PV"]
optional_pins = {"R", "LD"} # Estos pueden no estar conectados elif instr_type == "CTUD": input_pins = ["CU", "CD", "R", "LD", "PV"]
else:
instruction["scl"] = f"// ERROR: Tipo de contador no soportado: {instr_type}"
instruction["type"] += "_error"
return True # Procesado con error
for pin in input_pins: for pin in input_pins:
pin_info = instruction["inputs"].get(pin) pin_info = instruction["inputs"].get(pin)
if pin_info: # Si el pin está definido en el JSON if pin_info is None and pin not in ["R", "LD"]: # R y LD pueden no estar conectados
source_sympy_or_const = get_sympy_representation(pin_info, network_id, sympy_map, symbol_manager) print(f"Error: Falta entrada requerida '{pin}' para {instr_type} UID {instr_uid}.")
if source_sympy_or_const is None: # Permitir continuar si solo faltan R o LD opcionales? Por ahora no.
# print(f"DEBUG Counter {instr_uid}: Input param '{pin}' dependency not ready.") instruction["scl"] = f"// ERROR: Falta entrada requerida '{pin}' para {instr_type} UID {instr_uid}."
dependencies_resolved = False instruction["type"] += "_error"
break return True # Error
# Convertir a SCL para la llamada (sin simplificar aquí) elif pin_info: # Si el pin existe en el JSON
param_scl_value = sympy_expr_to_scl(source_sympy_or_const, symbol_manager) scl_pin = get_scl_representation(pin_info, network_id, scl_map, access_map)
pin_name_scl = format_variable_name(pin) # Formatear nombre del parámetro if scl_pin is None:
scl_call_params.append(f"{pin_name_scl} := {param_scl_value}") resolved = False
elif pin not in optional_pins: # Si falta un pin requerido break # Salir si una dependencia no está lista
print(f"Error: Falta entrada requerida '{pin}' para {instr_type_original} UID {instr_uid}.") scl_pin_formatted = format_variable_name(scl_pin) if pin_info.get("type") == "variable" else scl_pin
instruction["scl"] = f"// ERROR: Falta entrada requerida '{pin}' para {instr_type_original} UID {instr_uid}." params.append(f"{pin} := {scl_pin_formatted}")
instruction["type"] = instr_type_original + "_error"
return True
if not dependencies_resolved: if not resolved: return False
return False
# 3. Obtener Nombre de Instancia # 2. Obtener Nombre de Instancia (NECESITA MEJORA EN x1.py)
# Asumiendo que x1 o una fase previa llena 'instance_db' si es un FB multi-instancia instance_name = instruction.get("instance_db")
instance_name_raw = instruction.get("instance_db") if not instance_name:
if not instance_name_raw: instance_name = f"#COUNTER_INSTANCE_{instr_uid}" # Placeholder
# Asumiendo que es STAT si no hay DB instancia explícito (requiere declaración en x3) print(f"Advertencia: No se encontró instancia para {instr_type} UID {instr_uid}. Usando placeholder '{instance_name}'. Ajustar x1.py y declarar en x3.py.")
instance_name_raw = instruction.get("instance_name") # Buscar nombre directo si x1 lo provee else:
if not instance_name_raw: instance_name = format_variable_name(instance_name)
instance_name_raw = f"#CTR_INSTANCE_{instr_uid}" # Placeholder final
print(f"Advertencia: No se encontró nombre/instancia para {instr_type_original} UID {instr_uid}. Usando placeholder '{instance_name_raw}'.")
instance_name_scl = format_variable_name(instance_name_raw)
# 4. Generar la llamada SCL # 3. Generar la llamada SCL
param_string = ", ".join(scl_call_params) param_string = ", ".join(params)
scl_call = f"{instance_name_scl}({param_string}); // TODO: Declarar {instance_name_scl} : {instr_type_original.upper()}; en VAR_STAT o VAR" scl_call = f"{instance_name}({param_string}); // TODO: Declarar {instance_name} : {instr_type}; en VAR_STAT o VAR"
# Contadores no suelen tener EN/ENO explícito en LAD, se asume siempre habilitado instruction["scl"] = scl_call
instruction["scl"] = scl_call # SCL final generado instruction["type"] = instr_type + SCL_SUFFIX
instruction["type"] = instr_type_original + SCL_SUFFIX
# 4. Actualizar sympy_map para las salidas (QU, QD, CV) # 4. Actualizar scl_map para las salidas (QU, QD, CV)
output_pins_map = { output_pins = []
"CTU": ["QU", "CV"], if instr_type == "CTU": output_pins = ["QU", "CV"]
"CTD": ["QD", "CV"], elif instr_type == "CTD": output_pins = ["QD", "CV"]
"CTUD": ["QU", "QD", "CV"] elif instr_type == "CTUD": output_pins = ["QU", "QD", "CV"]
}
output_pins = output_pins_map.get(instr_type_original.upper(), [])
for pin in output_pins: for pin in output_pins:
map_key = (network_id, instr_uid, pin) map_key = (network_id, instr_uid, pin)
output_scl_access = f"{instance_name_scl}.{pin.upper()}" scl_map[map_key] = f"{instance_name}.{pin}"
if pin.upper() in ["QU", "QD"]: # These are boolean outputs # Contadores no tienen ENO estándar en LAD/FBD
# *** Store SymPy Symbol for boolean outputs QU/QD ***
sympy_out_symbol = symbol_manager.get_symbol(output_scl_access)
if sympy_out_symbol:
sympy_map[map_key] = sympy_out_symbol # Store SYMBOL
else:
print(f"Error: Could not create symbol for {output_scl_access} in {instr_type_original} {instr_uid}")
sympy_map[map_key] = None
else:
# For non-boolean (like CV - count value), store SCL access string
sympy_map[map_key] = output_scl_access
return True return True
# --- Procesador de Comparadores (EQ ya existe, añadir otros) ---
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para los contadores CTU, CTD, CTUD.""" """Devuelve la información para los contadores CTU, CTD, CTUD."""
# Asumiendo que los tipos en el JSON son CTU, CTD, CTUD
return [ return [
{'type_name': 'ctu', 'processor_func': process_counter, 'priority': 5}, {'type_name': 'ctu', 'processor_func': process_counter, 'priority': 5},
{'type_name': 'ctd', 'processor_func': process_counter, 'priority': 5}, {'type_name': 'ctd', 'processor_func': process_counter, 'priority': 5},

View File

@ -1,85 +1,91 @@
# processors/process_edge_detector.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_edge_detector(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
""" # Example: from .processor_utils import get_scl_representation, format_variable_name
Genera la expresión SymPy para el pulso de PBox (P_TRIG) o NBox (N_TRIG). # Or: import processors.processor_utils as utils
Guarda la expresión SymPy del pulso en sympy_map['out'].
Genera y guarda el SCL para la actualización de memoria en '_edge_mem_update_scl'. # TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_edge_detector(instruction, network_id, scl_map, access_map, data):
"""Genera SCL para PBox (P_TRIG) o NBox (N_TRIG).
Guarda la expresión del pulso en scl_map['out'] y la actualización
de memoria en un campo temporal '_edge_mem_update_scl'.
El campo 'scl' principal se deja casi vacío/comentario. El campo 'scl' principal se deja casi vacío/comentario.
Usa el nombre de memoria original sin renombrar.
""" """
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # PBox o NBox instr_type_original = instruction["type"] # PBox o NBox
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False
# 1. Obtener CLK (como SymPy expr) y MemBit (como SymPy Symbol) if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False # Ya procesado o error
# 1. Obtener CLK y MemBit original
clk_input = instruction["inputs"].get("in") clk_input = instruction["inputs"].get("in")
mem_bit_input = instruction["inputs"].get("bit") mem_bit_input = instruction["inputs"].get("bit")
clk_scl = get_scl_representation(clk_input, network_id, scl_map, access_map)
mem_bit_scl_original = get_scl_representation(mem_bit_input, network_id, scl_map, access_map) # Ej: "M19001"
sympy_clk_expr = get_sympy_representation(clk_input, network_id, sympy_map, symbol_manager) # 2. Verificar dependencias y tipo de MemBit
mem_bit_plc_name = extract_plc_variable_name(mem_bit_input) if clk_scl is None: return False
sympy_mem_bit_symbol = symbol_manager.get_symbol(mem_bit_plc_name) if mem_bit_plc_name else None if mem_bit_scl_original is None:
instruction["scl"] = f"// ERROR: {instr_type_original} {instr_uid} MemBit no resuelto."
# 2. Verificar dependencias instruction["type"] = instr_type_original + "_error"
if sympy_clk_expr is None: return False return True
if sympy_mem_bit_symbol is None: if not (mem_bit_input and mem_bit_input.get("type") == "variable"):
err_msg = f"MemBit no resuelto o no es variable para {instr_type_original} UID {instr_uid}" instruction["scl"] = f"// ERROR: {instr_type_original} {instr_uid} 'bit' no es variable."
print(f"Error: {err_msg}")
instruction["scl"] = f"// ERROR: {err_msg}"
instruction["type"] = instr_type_original + "_error" instruction["type"] = instr_type_original + "_error"
return True return True
# 3. Generar Lógica SymPy del *pulso* # 3. Formatear CLK (usa memoria original)
result_pulse_sympy_expr = sympy.false # Default clk_scl_formatted = clk_scl
scl_comment_prefix = "" if clk_scl not in ["TRUE", "FALSE"] and \
if instr_type_original.upper() == "PBOX": # P_TRIG (' ' in clk_scl or 'AND' in clk_scl or 'OR' in clk_scl or ':=' in clk_scl) and \
result_pulse_sympy_expr = sympy.And(sympy_clk_expr, sympy.Not(sympy_mem_bit_symbol)) not (clk_scl.startswith('(') and clk_scl.endswith(')')):
scl_comment_prefix = "P_TRIG" clk_scl_formatted = f"({clk_scl})"
elif instr_type_original.upper() == "NBOX": # N_TRIG
result_pulse_sympy_expr = sympy.And(sympy.Not(sympy_clk_expr), sympy_mem_bit_symbol) # 4. Generar Lógica SCL del *pulso*
scl_comment_prefix = "N_TRIG" result_pulse_expression = "FALSE"
scl_comment = ""
if instr_type_original == "PBox": # P_TRIG
result_pulse_expression = f"{clk_scl_formatted} AND NOT {mem_bit_scl_original}"
scl_comment = f"// P_TRIG({clk_scl_formatted})"
elif instr_type_original == "NBox": # N_TRIG
result_pulse_expression = f"NOT {clk_scl_formatted} AND {mem_bit_scl_original}"
scl_comment = f"// N_TRIG({clk_scl_formatted})"
else: # Error else: # Error
instruction["scl"] = f"// ERROR: Tipo de flanco inesperado {instr_type_original}" instruction["scl"] = f"// ERROR: Tipo de flanco inesperado {instr_type_original}"
instruction["type"] = instr_type_original + "_error" instruction["type"] = instr_type_original + "_error"
return True return True
# 4. Generar el SCL para la actualización del bit de memoria # 5. Generar la actualización del bit de memoria
# Necesitamos la representación SCL de la entrada CLK scl_mem_update = f"{mem_bit_scl_original} := {clk_scl_formatted};"
clk_scl_str = sympy_expr_to_scl(sympy_clk_expr, symbol_manager)
# Usamos el nombre PLC original formateado para el bit de memoria
mem_bit_scl_name = format_variable_name(mem_bit_plc_name)
scl_mem_update = f"{mem_bit_scl_name} := {clk_scl_str};"
scl_comment_for_update = f"// {scl_comment_prefix}({clk_scl_str}) - Mem: {mem_bit_scl_name}"
# 5. Almacenar Resultados # 6. Almacenar Resultados
map_key_out = (network_id, instr_uid, "out") map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = result_pulse_sympy_expr # Guardar EXPRESIÓN SymPy del pulso scl_map[map_key_out] = result_pulse_expression # Guardar EXPRESIÓN del pulso
# Guardar SCL de actualización + Comentario en campo temporal instruction['_edge_mem_update_scl'] = f"{scl_mem_update} {scl_comment}" # Guardar UPDATE + Comentario en campo temporal
instruction['_edge_mem_update_scl'] = f"{scl_mem_update} {scl_comment_for_update}" instruction['scl'] = f"// {instr_type_original} Logic moved to consumer Coil" # Dejar SCL principal vacío/comentario
# Marcar como procesado, SCL principal es solo comentario
instruction['scl'] = f"// {instr_type_original} SymPy processed, logic in consumer"
instruction["type"] = instr_type_original + SCL_SUFFIX instruction["type"] = instr_type_original + SCL_SUFFIX
# 6. Propagar ENO (es la expresión SymPy de CLK) # 7. Propagar ENO
map_key_eno = (network_id, instr_uid, "eno") map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_clk_expr scl_map[map_key_eno] = clk_scl
return True return True
# --- process_coil MODIFICADA (con \n correcto) ---
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la info para los detectores de flanco PBox y NBox.""" """Devuelve la información para los detectores de flanco PBox (P_TRIG) y NBox (N_TRIG)."""
return [ return [
{'type_name': 'pbox', 'processor_func': process_edge_detector, 'priority': 2}, {'type_name': 'pbox', 'processor_func': process_edge_detector, 'priority': 2}, # Flanco positivo
{'type_name': 'nbox', 'processor_func': process_edge_detector, 'priority': 2} {'type_name': 'nbox', 'processor_func': process_edge_detector, 'priority': 2} # Flanco negativo
] ]

View File

@ -1,63 +1,73 @@
# processors/process_eq.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
# Usar las nuevas utilidades de SymPy
from .processor_utils import get_sympy_representation, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed" # Nuevo sufijo
def process_eq(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
""" # Example: from .processor_utils import get_scl_representation, format_variable_name
Genera la expresión SymPy para el comparador de igualdad (EQ). # Or: import processors.processor_utils as utils
El resultado se propaga por sympy_map['out'].
""" # TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_eq(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Eq") instr_type = instruction["type"]
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
# Obtener operandos como expresiones SymPy o constantes/strings
in1_info = instruction["inputs"].get("in1") in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2") in2_info = instruction["inputs"].get("in2")
op1_sympy = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager) in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
op2_sympy = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager) in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
# Obtener 'pre' (RLO anterior) como expresión SymPy if in1_scl is None or in2_scl is None:
pre_input = instruction["inputs"].get("pre") # Asumir 'pre' como entrada RLO estándar return False # Dependencias no listas
sympy_pre_rlo = get_sympy_representation(pre_input, network_id, sympy_map, symbol_manager) if pre_input else sympy.true
# Verificar dependencias # Formatear operandos si son variables
if op1_sympy is None or op2_sympy is None or sympy_pre_rlo is None: op1 = (
# print(f"DEBUG EQ {instr_uid}: Dependency not ready") format_variable_name(in1_scl)
return False if in1_info and in1_info.get("type") == "variable"
else in1_scl
)
op2 = (
format_variable_name(in2_scl)
if in2_info and in2_info.get("type") == "variable"
else in2_scl
)
# Crear la expresión de igualdad SymPy # Añadir paréntesis si los operandos contienen espacios (poco probable después de formatear)
try: op1 = f"({op1})" if " " in op1 and not op1.startswith("(") else op1
# sympify puede ser necesario si los operandos son strings de constantes op2 = f"({op2})" if " " in op2 and not op2.startswith("(") else op2
op1_eval = sympy.sympify(op1_sympy) if isinstance(op1_sympy, str) else op1_sympy
op2_eval = sympy.sympify(op2_sympy) if isinstance(op2_sympy, str) else op2_sympy
comparison_expr = sympy.Eq(op1_eval, op2_eval) # Eq para igualdad
except (SyntaxError, TypeError, ValueError) as e:
print(f"Error creating SymPy equality for {instr_uid}: {e}")
instruction["scl"] = f"// ERROR creando expr SymPy EQ {instr_uid}: {e}"
instruction["type"] = instr_type_original + "_error"
return True
# Guardar resultado (Expresión SymPy booleana) en el mapa para 'out' comparison_scl = f"{op1} = {op2}"
# Guardar el resultado booleano de la comparación en el mapa SCL para la salida 'out'
map_key_out = (network_id, instr_uid, "out") map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = comparison_expr scl_map[map_key_out] = comparison_scl
# Guardar el RLO de entrada ('pre') como ENO en el mapa SymPy # Procesar la entrada 'pre' (RLO anterior) para determinar ENO
pre_input = instruction["inputs"].get("pre")
pre_scl = (
"TRUE"
if pre_input is None
else get_scl_representation(pre_input, network_id, scl_map, access_map)
)
if pre_scl is None:
return False # Dependencia 'pre' no lista
# Guardar el estado de 'pre' como ENO
map_key_eno = (network_id, instr_uid, "eno") map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_pre_rlo scl_map[map_key_eno] = pre_scl
# Marcar como procesado, SCL principal es solo comentario # El SCL generado es solo un comentario indicando la condición,
instruction["scl"] = f"// SymPy EQ: {comparison_expr}" # Comentario opcional # ya que la lógica se propaga a través de scl_map['out']
instruction["type"] = instr_type_original + SCL_SUFFIX instruction["scl"] = f"// Comparison Eq {instr_uid}: {comparison_scl}"
instruction["type"] = instr_type + SCL_SUFFIX
return True return True
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para el comparador de igualdad (EQ).""" """Devuelve la información para el comparador de igualdad (EQ)."""

View File

@ -1,90 +1,82 @@
# processors/process_math.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_math(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_math(instruction, network_id, scl_map, access_map, data):
""" """
Genera SCL para operaciones matemáticas (SUB, MUL, DIV), simplificando EN. Genera SCL para operaciones matemáticas (SUB, MUL, DIV).
""" """
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "") # SUB, MUL, DIV instr_type = instruction["type"] # SUB, MUL, DIV
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
# Mapa de tipos a operadores SCL string # Mapa de tipos a operadores SCL
op_map = {"SUB": "-", "MUL": "*", "DIV": "/"} op_map = {"SUB": "-", "MUL": "*", "DIV": "/"}
scl_operator = op_map.get(instr_type_original.upper()) scl_operator = op_map.get(instr_type)
if not scl_operator: if not scl_operator:
instruction["scl"] = f"// ERROR: Operación matemática no soportada: {instr_type_original}" instruction["scl"] = f"// ERROR: Operación matemática no soportada: {instr_type}"
instruction["type"] = instr_type_original + "_error" instruction["type"] += "_error"
return True return True
# Obtener EN (SymPy), IN1, IN2 (SymPy o Constante/String) # Obtener EN, IN1, IN2
en_input = instruction["inputs"].get("en") en_input = instruction["inputs"].get("en")
in1_info = instruction["inputs"].get("in1") in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2") in2_info = instruction["inputs"].get("in2")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true en_scl = get_scl_representation(en_input, network_id, scl_map, access_map) if en_input else "TRUE"
op1_sympy_or_const = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager) in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
op2_sympy_or_const = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager) in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
# Obtener destino SCL if en_scl is None or in1_scl is None or in2_scl is None:
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=True) return False # Dependencias no listas
# Verificar dependencias
if sympy_en_expr is None or op1_sympy_or_const is None or op2_sympy_or_const is None or target_scl_name is None:
return False
# Convertir operandos SymPy/Constante a SCL strings
op1_scl = sympy_expr_to_scl(op1_sympy_or_const, symbol_manager)
op2_scl = sympy_expr_to_scl(op2_sympy_or_const, symbol_manager)
# Añadir paréntesis si contienen operadores (más seguro)
# La función sympy_expr_to_scl debería idealmente manejar esto, pero doble chequeo simple:
op1_scl_formatted = f"({op1_scl})" if re.search(r'[+\-*/ ]', op1_scl) else op1_scl
op2_scl_formatted = f"({op2_scl})" if re.search(r'[+\-*/ ]', op2_scl) else op2_scl
# Generar SCL Core
scl_core = f"{target_scl_name} := {op1_scl_formatted} {scl_operator} {op2_scl_formatted};"
# Aplicar Condición EN (Simplificando EN)
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# Actualizar instrucción y mapa
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (nombre SCL del destino) y ENO (expresión SymPy)
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = target_scl_name # Guardar nombre del destino
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO
# Obtener destino 'out'
target_scl = get_target_scl_name(instruction, "out", network_id, default_to_temp=True)
if target_scl is None:
instruction["scl"] = f"// ERROR: {instr_type} {instr_uid} sin destino 'out'."
instruction["type"] += "_error"
return True return True
# Formatear operandos si son variables
op1 = format_variable_name(in1_scl) if in1_info and in1_info.get("type") == "variable" else in1_scl
op2 = format_variable_name(in2_scl) if in2_info and in2_info.get("type") == "variable" else in2_scl
# Añadir paréntesis si es necesario (especialmente para expresiones)
op1 = f"({op1})" if (" " in op1 or "+" in op1 or "-" in op1 or "*" in op1 or "/" in op1) and not op1.startswith("(") else op1
op2 = f"({op2})" if (" " in op2 or "+" in op2 or "-" in op2 or "*" in op2 or "/" in op2) and not op2.startswith("(") else op2
# Generar SCL
scl_core = f"{target_scl} := {op1} {scl_operator} {op2};"
scl_final = f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
# Actualizar mapa SCL
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = target_scl
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
return True
# --- Procesador NOT ---
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve info para SUB, MUL, DIV.""" """Devuelve la información para operaciones matemáticas (excepto ADD, MOD)."""
# Esta función maneja SUB, MUL, DIV.
return [ return [
{'type_name': 'sub', 'processor_func': process_math, 'priority': 4}, {'type_name': 'sub', 'processor_func': process_math, 'priority': 4}, # Resta
{'type_name': 'mul', 'processor_func': process_math, 'priority': 4}, {'type_name': 'mul', 'processor_func': process_math, 'priority': 4}, # Multiplicación
{'type_name': 'div', 'processor_func': process_math, 'priority': 4} {'type_name': 'div', 'processor_func': process_math, 'priority': 4} # División
] ]

View File

@ -1,74 +1,75 @@
# processors/process_mod.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
import re # Importar re si no estaba
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_mod(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
"""Genera SCL para Modulo (MOD), simplificando EN.""" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_mod(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Mod") instr_type = instruction["type"]
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
# Obtener EN (SymPy), IN1, IN2 (SymPy o Constante/String)
en_input = instruction["inputs"].get("en") en_input = instruction["inputs"].get("en")
en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
in1_info = instruction["inputs"].get("in1") in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2") in2_info = instruction["inputs"].get("in2")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
op1_sympy_or_const = get_sympy_representation(in1_info, network_id, sympy_map, symbol_manager) in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
op2_sympy_or_const = get_sympy_representation(in2_info, network_id, sympy_map, symbol_manager)
# Obtener destino SCL if en_scl is None or in1_scl is None or in2_scl is None:
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=True)
# Verificar dependencias
if sympy_en_expr is None or op1_sympy_or_const is None or op2_sympy_or_const is None or target_scl_name is None:
return False return False
# Convertir operandos SymPy/Constante a SCL strings target_scl = get_target_scl_name(
op1_scl = sympy_expr_to_scl(op1_sympy_or_const, symbol_manager) instruction, "out", network_id, default_to_temp=True
op2_scl = sympy_expr_to_scl(op2_sympy_or_const, symbol_manager) )
if target_scl is None:
# Añadir paréntesis si contienen operadores print(f"Error: Sin destino MOD {instr_uid}")
op1_scl_formatted = f"({op1_scl})" if re.search(r'[+\-*/ ]', op1_scl) else op1_scl instruction["scl"] = f"// ERROR: Mod {instr_uid} sin destino"
op2_scl_formatted = f"({op2_scl})" if re.search(r'[+\-*/ ]', op2_scl) else op2_scl instruction["type"] += "_error"
# Generar SCL Core
scl_core = f"{target_scl_name} := {op1_scl_formatted} MOD {op2_scl_formatted};"
# Aplicar Condición EN (Simplificando EN)
scl_final = ""
if sympy_en_expr != sympy.true:
try:
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True)
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True)
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
scl_final = scl_core
# Actualizar instrucción y mapa
instruction["scl"] = scl_final # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (nombre SCL del destino) y ENO (expresión SymPy)
map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = target_scl_name # Guardar nombre del destino
map_key_eno = (network_id, instr_uid, "eno")
sympy_map[map_key_eno] = sympy_en_expr # Guardar la expresión SymPy para ENO
return True return True
# Formatear operandos si son variables
op1 = (
format_variable_name(in1_scl)
if in1_info and in1_info.get("type") == "variable"
else in1_scl
)
op2 = (
format_variable_name(in2_scl)
if in2_info and in2_info.get("type") == "variable"
else in2_scl
)
# Añadir paréntesis si es necesario (poco probable tras formatear)
op1 = f"({op1})" if " " in op1 and not op1.startswith("(") else op1
op2 = f"({op2})" if " " in op2 and not op2.startswith("(") else op2
scl_core = f"{target_scl} := {op1} MOD {op2};"
scl_final = (
f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
)
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = target_scl
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
return True
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para la operación Modulo.""" """Devuelve la información para la operación Modulo."""

View File

@ -1,74 +1,83 @@
# processors/process_move.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
import re # Importar re
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_move(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
"""Genera SCL para Move, simplificando la condición EN.""" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_move(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Move") instr_type = instruction["type"]
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
# Obtener EN (SymPy) e IN (SymPy o Constante/String)
en_input = instruction["inputs"].get("en") en_input = instruction["inputs"].get("en")
en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
in_info = instruction["inputs"].get("in") in_info = instruction["inputs"].get("in")
sympy_en_expr = get_sympy_representation(en_input, network_id, sympy_map, symbol_manager) if en_input else sympy.true in_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
input_sympy_or_const = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager)
# Obtener destino SCL (requiere destino explícito para MOVE) if en_scl is None or in_scl is None:
target_scl_name = get_target_scl_name(instruction, "out1", network_id, default_to_temp=False)
if target_scl_name is None:
target_scl_name = get_target_scl_name(instruction, "out", network_id, default_to_temp=False)
# Verificar dependencias
if sympy_en_expr is None or input_sympy_or_const is None:
return False return False
if target_scl_name is None:
print(f"Error: MOVE {instr_uid} sin destino claro en 'out' o 'out1'.")
instruction["scl"] = f"// ERROR: MOVE {instr_uid} sin destino claro."
instruction["type"] = instr_type_original + "_error"
return True # Procesado con error
# Convertir la entrada (SymPy o Constante) a SCL string # Intentar obtener el destino de 'out1' (o 'out' si es el estándar)
input_scl = sympy_expr_to_scl(input_sympy_or_const, symbol_manager) target_scl = get_target_scl_name(
instruction, "out1", network_id, default_to_temp=False
)
if target_scl is None:
target_scl = get_target_scl_name(
instruction, "out", network_id, default_to_temp=False
)
# Generar SCL Core if target_scl is None:
scl_core = f"{target_scl_name} := {input_scl};" # Si no hay destino explícito, podríamos usar una temp si la lógica lo requiere,
# pero MOVE generalmente necesita un destino claro. Marcar como advertencia/error.
print(
f"Advertencia/Error: MOVE {instr_uid} sin destino claro en 'out' o 'out1'. Se requiere destino explícito."
)
# Decidir si generar error o simplemente no hacer nada. No hacer nada es más seguro.
# instruction["scl"] = f"// ERROR: MOVE {instr_uid} sin destino"
# instruction["type"] += "_error"
# return True
return False # No procesar si no hay destino claro
# Aplicar Condición EN (Simplificando EN) # Formatear entrada si es variable
scl_final = "" in_scl_formatted = (
if sympy_en_expr != sympy.true: format_variable_name(in_scl)
try: if in_info and in_info.get("type") == "variable"
#simplified_en_expr = sympy.simplify_logic(sympy_en_expr, force=True) else in_scl
simplified_en_expr = sympy.logic.boolalg.to_dnf(sympy_en_expr, simplify=True) )
except Exception as e:
print(f"Error simplifying EN for {instr_type_original} {instr_uid}: {e}")
simplified_en_expr = sympy_en_expr # Fallback
en_condition_scl = sympy_expr_to_scl(simplified_en_expr, symbol_manager)
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()]) scl_core = f"{target_scl} := {in_scl_formatted};"
scl_final = f"IF {en_condition_scl} THEN\n{indented_core}\nEND_IF;" scl_final = (
else: f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
scl_final = scl_core )
# Actualizar instrucción y mapa instruction["scl"] = scl_final
instruction["scl"] = scl_final # SCL final generado instruction["type"] = instr_type + SCL_SUFFIX
instruction["type"] = instr_type_original + SCL_SUFFIX
# Propagar valor de salida (nombre SCL del destino) y ENO (expresión SymPy) # Propagar el valor movido a través de scl_map si se usa 'out' o 'out1' como fuente
# Asumiendo que out y out1 deben propagar el mismo valor map_key_out = (network_id, instr_uid, "out") # Asumir 'out' como estándar
sympy_map[(network_id, instr_uid, "out")] = target_scl_name scl_map[map_key_out] = target_scl # El valor es lo que está en el destino
sympy_map[(network_id, instr_uid, "out1")] = target_scl_name map_key_out1 = (network_id, instr_uid, "out1") # Si existe out1
sympy_map[(network_id, instr_uid, "eno")] = sympy_en_expr scl_map[map_key_out1] = target_scl
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
return True return True
# EN x2_process.py
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para la operación Move.""" """Devuelve la información para la operación Move."""

View File

@ -1,53 +1,46 @@
# processors/process_not.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed" # Nuevo sufijo
def process_not(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
"""Genera la expresión SymPy para la inversión lógica NOT.""" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_not(instruction, network_id, scl_map, access_map, data):
"""Genera la expresión SCL para la inversión lógica NOT."""
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "Not") instr_type = instruction["type"] # Not
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
# Obtener entrada como expresión SymPy
in_info = instruction["inputs"].get("in") in_info = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager) in_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
# Verificar dependencias if in_scl is None:
if sympy_expr_in is None: return False # Dependencia no lista
# print(f"DEBUG Not {instr_uid}: Dependency not ready")
return False
# Crear la expresión NOT de SymPy # Formatear entrada (añadir paréntesis si es complejo)
try: in_scl_formatted = in_scl
not_expr = sympy.Not(sympy_expr_in) if (" " in in_scl or "AND" in in_scl or "OR" in in_scl) and not (in_scl.startswith("(") and in_scl.endswith(")")):
# ¿Simplificar aquí? NOT(NOT A) -> A; NOT(TRUE) -> FALSE, etc. in_scl_formatted = f"({in_scl})"
# simplify_logic podría hacer esto, pero puede ser costoso en cada paso.
# SymPy podría manejar simplificaciones básicas automáticamente.
# Opcional: not_expr = sympy.simplify_logic(not_expr)
except Exception as e:
print(f"Error creating SymPy Not for {instr_uid}: {e}")
instruction["scl"] = f"// ERROR creando expr SymPy NOT {instr_uid}: {e}"
instruction["type"] = instr_type_original + "_error"
return True
# Guardar resultado (Expresión SymPy) en el mapa para 'out' result_scl = f"NOT {in_scl_formatted}"
# Guardar resultado en mapa para 'out'
map_key_out = (network_id, instr_uid, "out") map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = not_expr scl_map[map_key_out] = result_scl
# Marcar como procesado, SCL principal es solo comentario
instruction["scl"] = f"// SymPy NOT: {not_expr}" # Comentario opcional
instruction["type"] = instr_type_original + SCL_SUFFIX
# NOT no tiene EN/ENO explícito en LAD, modifica el RLO ('out')
instruction["scl"] = f"// Logic NOT {instr_uid}: {result_scl}"
instruction["type"] = instr_type + SCL_SUFFIX
# NOT no tiene EN/ENO explícito en LAD, modifica el RLO
return True return True
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para la operación Not.""" """Devuelve la información para la operación Not."""

View File

@ -1,68 +1,79 @@
# processors/process_o.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed" # Nuevo sufijo
def process_o(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
"""Genera la expresión SymPy para la operación lógica O (OR).""" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_o(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "O") instr_type = instruction["type"]
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
# Buscar todas las entradas 'in', 'in1', 'in2', ... # Buscar todas las entradas 'in', 'in1', 'in2', ...
input_pins = sorted([pin for pin in instruction.get("inputs", {}) if pin.startswith("in")]) input_pins = sorted([pin for pin in instruction["inputs"] if pin.startswith("in")])
if not input_pins: if not input_pins:
print(f"Error: O {instr_uid} sin pines de entrada (inX).") print(f"Error: O {instr_uid} sin pines de entrada (inX).")
instruction["scl"] = f"// ERROR: O {instr_uid} sin pines inX" instruction["scl"] = f"// ERROR: O {instr_uid} sin pines inX"
instruction["type"] = instr_type_original + "_error" instruction["type"] += "_error"
return True return True # Procesado con error
sympy_parts = [] scl_parts = []
all_resolved = True all_resolved = True
for pin in input_pins: for pin in input_pins:
input_info = instruction["inputs"][pin] in_scl = get_scl_representation(
sympy_expr = get_sympy_representation(input_info, network_id, sympy_map, symbol_manager) instruction["inputs"][pin], network_id, scl_map, access_map
)
if sympy_expr is None: if in_scl is None:
all_resolved = False all_resolved = False
# print(f"DEBUG: O {instr_uid} esperando pin {pin}") # print(f"DEBUG: O {instr_uid} esperando pin {pin}")
break # Salir si una dependencia no está lista break # Salir del bucle for si una entrada no está lista
# Optimización: No incluir FALSE en un OR # Formatear término (añadir paréntesis si es necesario)
if sympy_expr != sympy.false: term = in_scl
sympy_parts.append(sympy_expr) if (" " in term or "AND" in term) and not (
term.startswith("(") and term.endswith(")")
):
term = f"({term})"
scl_parts.append(term)
if not all_resolved: if not all_resolved:
return False # Esperar dependencias return False # Esperar a que todas las entradas estén resueltas
# Construir la expresión OR de SymPy # Construir la expresión OR
result_sympy_expr = sympy.false # Valor por defecto si no hay entradas válidas o todas son FALSE result_scl = "FALSE" # Valor por defecto si no hay entradas válidas (raro)
if sympy_parts: if scl_parts:
# Usar sympy.Or para construir la expresión result_scl = " OR ".join(scl_parts)
result_sympy_expr = sympy.Or(*sympy_parts) # Simplificar si solo hay un término
# Simplificar casos obvios como OR(X) -> X, OR(X, TRUE) -> TRUE if len(scl_parts) == 1:
# simplify_logic aquí puede ser prematuro, mejor al final. result_scl = scl_parts[0]
# Pero Or() podría simplificar automáticamente OR(X) -> X. # Quitar paréntesis redundantes si solo hay un término y está entre paréntesis
# Opcional: result_sympy_expr = sympy.simplify_logic(result_sympy_expr) if result_scl.startswith("(") and result_scl.endswith(")"):
# Comprobar si los paréntesis son necesarios (contienen operadores de menor precedencia)
# Simplificación: quitar siempre si solo hay un término. Podría ser incorrecto en casos complejos.
# result_scl = result_scl[1:-1] # Comentado por seguridad
pass
# Actualizar mapa SCL y la instrucción
# Guardar la expresión SymPy resultante en el mapa para 'out'
map_key_out = (network_id, instr_uid, "out") map_key_out = (network_id, instr_uid, "out")
sympy_map[map_key_out] = result_sympy_expr scl_map[map_key_out] = result_scl
instruction["scl"] = (
f"// Logic O {instr_uid}: {result_scl}" # Comentario informativo
)
instruction["type"] = instr_type + SCL_SUFFIX
# Marcar como procesado, SCL principal es solo comentario
instruction["scl"] = f"// SymPy O: {result_sympy_expr}" # Comentario opcional
instruction["type"] = instr_type_original + SCL_SUFFIX
# La instrucción 'O' no tiene ENO propio, propaga el resultado por 'out' # La instrucción 'O' no tiene ENO propio, propaga el resultado por 'out'
return True return True
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para la operación lógica O (OR).""" """Devuelve la información para la operación lógica O (OR)."""

View File

@ -1,73 +1,58 @@
# processors/process_rcoil.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
import re
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_rcoil(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data ): # TODO: Import necessary functions from processor_utils
"""Genera SCL para Reset Coil (RCoil), simplificando la condición.""" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_rcoil(instruction, network_id, scl_map, access_map, data ):
"""Genera SCL para Reset Coil (RCoil): IF condition THEN variable := FALSE; END_IF;"""
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "RCoil") instr_type = instruction["type"]
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False # Ya procesado o con error
# Obtener condición de entrada (SymPy expr) # Obtener condición de entrada (RLO)
in_info = instruction["inputs"].get("in") in_info = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager) condition_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
# Obtener operando (nombre SCL del destino) # Obtener operando (variable a poner a FALSE)
target_scl_name = get_target_scl_name(instruction, "operand", network_id, default_to_temp=False) # RCoil necesita destino explícito operand_info = instruction["inputs"].get("operand")
variable_scl = get_scl_representation(operand_info, network_id, scl_map, access_map)
# Verificar dependencias # Verificar dependencias
if sympy_expr_in is None: return False if condition_scl is None or variable_scl is None:
if target_scl_name is None: return False # Dependencias no listas
print(f"Error: RCoil {instr_uid} operando no es variable o falta info.")
# Verificar que el operando sea una variable
if not (operand_info and operand_info.get("type") == "variable"):
print(f"Error: RCoil {instr_uid} operando no es variable o falta info (Tipo: {operand_info.get('type')}).")
instruction["scl"] = f"// ERROR: RCoil {instr_uid} operando no es variable." instruction["scl"] = f"// ERROR: RCoil {instr_uid} operando no es variable."
instruction["type"] = instr_type_original + "_error" instruction["type"] += "_error"
return True return True # Procesado con error
# No hacer nada si la condición es FALSE constante # Formatear nombre de variable
if sympy_expr_in == sympy.false: variable_name_formatted = format_variable_name(variable_scl)
instruction["scl"] = f"// RCoil {instr_uid} con condición FALSE constante, optimizado."
instruction["type"] = instr_type_original + SCL_SUFFIX
return True
# Generar SCL Core (Reset) # Generar SCL
scl_core = f"{target_scl_name} := FALSE;" scl_core = f"{variable_name_formatted} := FALSE;"
scl_final = (
# Aplicar Condición IF si no es TRUE constante f"IF {condition_scl} THEN\n {scl_core}\nEND_IF;" if condition_scl != "TRUE" else scl_core
scl_final = "" )
if sympy_expr_in != sympy.true:
# Simplificar la condición ANTES de convertirla a SCL
try:
#simplified_expr = sympy.simplify_logic(sympy_expr_in, force=True)
simplified_expr = sympy.logic.boolalg.to_dnf(sympy_expr_in, simplify=True)
except Exception as e:
print(f"Error simplifying condition for RCoil {instr_uid}: {e}")
simplified_expr = sympy_expr_in # Fallback
condition_scl = sympy_expr_to_scl(simplified_expr, symbol_manager)
# Evitar IF TRUE THEN...
if condition_scl == "TRUE":
scl_final = scl_core
else:
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
# Condición es TRUE constante
scl_final = scl_core
# Actualizar instrucción # Actualizar instrucción
instruction["scl"] = scl_final # SCL final generado instruction["scl"] = scl_final
instruction["type"] = instr_type_original + SCL_SUFFIX instruction["type"] = instr_type + SCL_SUFFIX
# RCoil no tiene salida lógica para propagar en sympy_map # RCoil no genera salida 'out' ni 'eno' significativas para propagar
return True return True
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para la bobina Reset (RCoil).""" """Devuelve la información para la bobina Reset (RCoil)."""

View File

@ -1,73 +1,58 @@
# processors/process_scoil.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
import re
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, get_target_scl_name, format_variable_name
from .symbol_manager import SymbolManager
SCL_SUFFIX = "_sympy_processed"
def process_scoil(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
"""Genera SCL para Set Coil (SCoil), simplificando la condición.""" # Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_scoil(instruction, network_id, scl_map, access_map, data):
"""Genera SCL para Set Coil (SCoil): IF condition THEN variable := TRUE; END_IF;"""
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "SCoil") instr_type = instruction["type"]
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original: if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False # Ya procesado o con error
# Obtener condición de entrada (SymPy expr) # Obtener condición de entrada (RLO)
in_info = instruction["inputs"].get("in") in_info = instruction["inputs"].get("in")
sympy_expr_in = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager) condition_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
# Obtener operando (nombre SCL del destino) # Obtener operando (variable a poner a TRUE)
target_scl_name = get_target_scl_name(instruction, "operand", network_id, default_to_temp=False) # SCoil necesita destino operand_info = instruction["inputs"].get("operand")
variable_scl = get_scl_representation(operand_info, network_id, scl_map, access_map)
# Verificar dependencias # Verificar dependencias
if sympy_expr_in is None: return False if condition_scl is None or variable_scl is None:
if target_scl_name is None: return False # Dependencias no listas
print(f"Error: SCoil {instr_uid} operando no es variable o falta info.")
# Verificar que el operando sea una variable
if not (operand_info and operand_info.get("type") == "variable"):
print(f"Error: SCoil {instr_uid} operando no es variable o falta info (Tipo: {operand_info.get('type')}).")
instruction["scl"] = f"// ERROR: SCoil {instr_uid} operando no es variable." instruction["scl"] = f"// ERROR: SCoil {instr_uid} operando no es variable."
instruction["type"] = instr_type_original + "_error" instruction["type"] += "_error"
return True return True # Procesado con error
# No hacer nada si la condición es FALSE constante # Formatear nombre de variable
if sympy_expr_in == sympy.false: variable_name_formatted = format_variable_name(variable_scl)
instruction["scl"] = f"// SCoil {instr_uid} con condición FALSE constante, optimizado."
instruction["type"] = instr_type_original + SCL_SUFFIX
return True
# Generar SCL Core (Set) # Generar SCL
scl_core = f"{target_scl_name} := TRUE;" scl_core = f"{variable_name_formatted} := TRUE;"
scl_final = (
# Aplicar Condición IF si no es TRUE constante f"IF {condition_scl} THEN\n {scl_core}\nEND_IF;" if condition_scl != "TRUE" else scl_core
scl_final = "" )
if sympy_expr_in != sympy.true:
# Simplificar la condición ANTES de convertirla a SCL
try:
#simplified_expr = sympy.simplify_logic(sympy_expr_in, force=True)
simplified_expr = sympy.logic.boolalg.to_dnf(sympy_expr_in, simplify=True)
except Exception as e:
print(f"Error simplifying condition for SCoil {instr_uid}: {e}")
simplified_expr = sympy_expr_in # Fallback
condition_scl = sympy_expr_to_scl(simplified_expr, symbol_manager)
# Evitar IF TRUE THEN...
if condition_scl == "TRUE":
scl_final = scl_core
else:
indented_core = "\n".join([f" {line}" for line in scl_core.splitlines()])
scl_final = f"IF {condition_scl} THEN\n{indented_core}\nEND_IF;"
else:
# Condición es TRUE constante
scl_final = scl_core
# Actualizar instrucción # Actualizar instrucción
instruction["scl"] = scl_final # SCL final generado instruction["scl"] = scl_final
instruction["type"] = instr_type_original + SCL_SUFFIX instruction["type"] = instr_type + SCL_SUFFIX
# SCoil no tiene salida lógica para propagar en sympy_map # SCoil no genera salida 'out' ni 'eno' significativas para propagar
return True return True
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para la bobina Set (SCoil).""" """Devuelve la información para la bobina Set (SCoil)."""

View File

@ -1,77 +1,73 @@
# processors/process_sd.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_sd(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_sd(instruction, network_id, scl_map, access_map, data):
""" """
Genera SCL para Temporizador On-Delay (Sd -> TON). Genera SCL para Temporizador On-Delay (Sd -> TON).
Requiere datos de instancia (DB o STAT/TEMP). Requiere datos de instancia (DB o STAT/TEMP).
""" """
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = "Sd" # Tipo original LAD instr_type = "Sd" # Tipo original LAD
if instruction.get("type","").endswith(SCL_SUFFIX) or "_error" in instruction.get("type",""): if instruction["type"].endswith(SCL_SUFFIX) or "_error" in instruction["type"]:
return False return False
# 1. Obtener Inputs: s (start), tv (time value), timer (instance) # 1. Obtener Inputs: s (start), tv (time value)
# El pin 'r' (reset) no tiene equivalente directo en TON, se ignora aquí.
s_info = instruction["inputs"].get("s") s_info = instruction["inputs"].get("s")
tv_info = instruction["inputs"].get("tv") tv_info = instruction["inputs"].get("tv")
timer_instance_info = instruction["inputs"].get("timer") timer_instance_info = instruction["inputs"].get("timer") # Esperando que x1 lo extraiga
sympy_s_expr = get_sympy_representation(s_info, network_id, sympy_map, symbol_manager) scl_s = get_scl_representation(s_info, network_id, scl_map, access_map)
# tv suele ser constante, pero lo obtenemos igual scl_tv = get_scl_representation(tv_info, network_id, scl_map, access_map)
sympy_or_const_tv = get_sympy_representation(tv_info, network_id, sympy_map, symbol_manager) scl_instance_name = get_scl_representation(timer_instance_info, network_id, scl_map, access_map)
# Obtener el nombre de la INSTANCIA (no su valor)
instance_plc_name = extract_plc_variable_name(timer_instance_info)
# Verificar dependencias if scl_s is None or scl_tv is None:
if sympy_s_expr is None or sympy_or_const_tv is None: return False return False # Dependencias no listas
if instance_plc_name is None:
print(f"Error: Sd {instr_uid} sin variable de instancia 'timer'.")
instance_plc_name = f"#TON_INSTANCE_{instr_uid}" # Placeholder con error implícito
print(f"Advertencia: Usando placeholder '{instance_plc_name}'. ¡Declarar en SCL!")
# Podríamos marcar como error, pero intentamos generar algo
# instruction["type"] = instr_type_original + "_error"
# return True
# Formatear nombre de instancia # 2. Validar y obtener Nombre de Instancia
instance_name_scl = format_variable_name(instance_plc_name) instance_name = None
if timer_instance_info and timer_instance_info.get("type") == "variable":
# Convertir entradas SymPy/Constante a SCL strings instance_name = scl_instance_name
s_scl = sympy_expr_to_scl(sympy_s_expr, symbol_manager) elif timer_instance_info:
tv_scl = sympy_expr_to_scl(sympy_or_const_tv, symbol_manager) print(f"Advertencia: Pin 'timer' de {instr_type} UID {instr_uid} conectado a algo inesperado: {timer_instance_info.get('type')}")
instance_name = f"#TON_INSTANCE_{instr_uid}"
# Generar la llamada SCL (TON usa IN, PT)
# Ignoramos 'r' (reset) de Sd
scl_call = f"{instance_name_scl}(IN := {s_scl}, PT := {tv_scl}); // TODO: Declarar {instance_name_scl} : TON;"
# Actualizar instrucción
instruction["scl"] = scl_call # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# 7. Actualizar sympy_map para las salidas Q y RT
map_key_q = (network_id, instr_uid, "q")
q_output_scl_access = f"{instance_name_scl}.Q" # SCL string to access output
# *** GET/CREATE AND STORE SYMBOL for boolean output Q ***
sympy_q_symbol = symbol_manager.get_symbol(q_output_scl_access)
if sympy_q_symbol:
sympy_map[map_key_q] = sympy_q_symbol # STORE THE SYMBOL OBJECT
else: else:
print(f"Error: Could not create symbol for {q_output_scl_access} in Sd {instr_uid}") instance_name = f"#TON_INSTANCE_{instr_uid}"
sympy_map[map_key_q] = None # Indicate error/unresolved print(f"Advertencia: No se encontró conexión al pin 'timer' para {instr_type} UID {instr_uid}. Usando placeholder '{instance_name}'. ¡Revisar x1.py y XML!")
# 3. Formatear entradas si son variables
scl_s_formatted = format_variable_name(scl_s) if s_info and s_info.get("type") == "variable" else scl_s
scl_tv_formatted = format_variable_name(scl_tv) if tv_info and tv_info.get("type") == "variable" else scl_tv
# 4. Generar la llamada SCL (TON usa IN, PT, Q, ET)
scl_call = f"{instance_name}(IN := {scl_s_formatted}, PT := {scl_tv_formatted}); // TODO: Declarar {instance_name} : TON; en VAR_STAT o VAR"
instruction["scl"] = scl_call
instruction["type"] = instr_type + SCL_SUFFIX
# 5. Actualizar scl_map para las salidas Q y RT (mapeado a ET de TON)
map_key_q = (network_id, instr_uid, "q")
scl_map[map_key_q] = f"{instance_name}.Q"
map_key_rt = (network_id, instr_uid, "rt") map_key_rt = (network_id, instr_uid, "rt")
# ET is TIME, store SCL access string scl_map[map_key_rt] = f"{instance_name}.ET"
sympy_map[map_key_rt] = f"{instance_name_scl}.ET"
return True return True
# --- NUEVO: Procesador de Agrupación (Refinado) ---
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la información para el temporizador On-Delay (Sd -> TON).""" """Devuelve la información para el temporizador On-Delay (Sd -> TON)."""
# Asumiendo que el tipo en el JSON es 'Sd'
return {'type_name': 'sd', 'processor_func': process_sd, 'priority': 5} return {'type_name': 'sd', 'processor_func': process_sd, 'priority': 5}

View File

@ -1,112 +1,91 @@
# processors/process_se.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_se(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_se(instruction, network_id, scl_map, access_map, data):
""" """
Genera SCL para Temporizador de Pulso (Se -> TP) o SdCoil (-> TON). Genera SCL para Temporizador de Pulso (Se -> TP).
Usa SymPy para entradas y almacena Symbol para salida Q. Requiere datos de instancia (DB o STAT/TEMP).
""" """
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
# Obtener tipo original (antes de añadir sufijo) para determinar comportamiento instr_type = "Se" # Tipo original LAD
instr_type_original = instruction.get("type", "").replace(SCL_SUFFIX,"").replace("_error","") # Se o SdCoil if instruction["type"].endswith(SCL_SUFFIX) or "_error" in instruction["type"]:
current_type = instruction.get("type","") # Tipo actual para chequeo inicial
if current_type.endswith(SCL_SUFFIX) or "_error" in current_type:
return False return False
# Determinar el tipo de instrucción SCL y pines de entrada/salida correctos # 1. Obtener Inputs: s (start), tv (time value)
scl_timer_type = "TP" # El pin 'r' (reset) no tiene equivalente directo en TP, se ignora aquí.
pin_in = "s" # Pin de entrada para Se s_info = instruction["inputs"].get("s")
pin_time = "tv" # Pin de valor de tiempo para Se tv_info = instruction["inputs"].get("tv")
pin_instance = "timer" # Pin donde se conecta la instancia para Se timer_instance_info = instruction["inputs"].get("timer") # Esperando que x1 lo extraiga
pin_out_q = "q" # Pin de salida Q para Se
pin_out_time = "rt" # Pin de tiempo restante para Se -> TP.ET
# Ajustar pines si el tipo original era SdCoil scl_s = get_scl_representation(s_info, network_id, scl_map, access_map)
if instr_type_original == "SdCoil": scl_tv = get_scl_representation(tv_info, network_id, scl_map, access_map)
scl_timer_type = "TON" # SdCoil es funcionalmente un TON # Obtenemos el nombre de la variable instancia, crucial!
pin_in = "in" # SdCoil usa 'in' scl_instance_name = get_scl_representation(timer_instance_info, network_id, scl_map, access_map)
pin_time = "value" # SdCoil usa 'value'
pin_instance = "operand" # SdCoil usa 'operand' como instancia/variable de salida
pin_out_q = "out" # SdCoil usa 'out' como pin de salida Q
pin_out_time = None # SdCoil no tiene salida ET explícita
# 1. Obtener Inputs usando los nombres de pin correctos if scl_s is None or scl_tv is None:
s_info = instruction["inputs"].get(pin_in) return False # Dependencias no listas
tv_info = instruction["inputs"].get(pin_time)
timer_instance_info = instruction["inputs"].get(pin_instance)
# Obtener representaciones (SymPy o Constante/String) # 2. Validar y obtener Nombre de Instancia
sympy_s_expr = get_sympy_representation(s_info, network_id, sympy_map, symbol_manager) instance_name = None
sympy_or_const_tv = get_sympy_representation(tv_info, network_id, sympy_map, symbol_manager) if timer_instance_info and timer_instance_info.get("type") == "variable":
# Obtener el nombre PLC original de la INSTANCIA instance_name = scl_instance_name # Ya debería estar formateado por get_scl_repr
instance_plc_name = extract_plc_variable_name(timer_instance_info) elif timer_instance_info: # Si está conectado pero no es variable directa? Raro.
print(f"Advertencia: Pin 'timer' de {instr_type} UID {instr_uid} conectado a algo inesperado: {timer_instance_info.get('type')}")
instance_name = f"#TP_INSTANCE_{instr_uid}" # Usar placeholder
else: # Si no hay pin 'timer' conectado (no debería pasar si x1 funciona)
instance_name = f"#TP_INSTANCE_{instr_uid}" # Usar placeholder
print(f"Advertencia: No se encontró conexión al pin 'timer' para {instr_type} UID {instr_uid}. Usando placeholder '{instance_name}'. ¡Revisar x1.py y XML!")
# 2. Verificar dependencias # 3. Formatear entradas si son variables (aunque get_scl_representation ya debería hacerlo)
if sympy_s_expr is None or sympy_or_const_tv is None: scl_s_formatted = format_variable_name(scl_s) if s_info and s_info.get("type") == "variable" else scl_s
# print(f"DEBUG {instr_type_original} {instr_uid}: Input/TV dependency not ready") scl_tv_formatted = format_variable_name(scl_tv) if tv_info and tv_info.get("type") == "variable" else scl_tv
return False
if instance_plc_name is None:
print(f"Error: {instr_type_original} {instr_uid} sin variable de instancia en pin '{pin_instance}'.")
instance_plc_name = f"#{scl_timer_type}_INSTANCE_{instr_uid}" # Placeholder
print(f"Advertencia: Usando placeholder '{instance_plc_name}'. ¡Declarar en SCL!")
# 3. Formatear nombre de instancia para SCL # 4. Generar la llamada SCL (TP usa IN, PT, Q, ET)
instance_name_scl = format_variable_name(instance_plc_name) scl_call = f"{instance_name}(IN := {scl_s_formatted}, PT := {scl_tv_formatted}); // TODO: Declarar {instance_name} : TP; en VAR_STAT o VAR"
# 4. Convertir entradas SymPy/Constante a SCL strings (simplificando la entrada IN)
try:
# Simplificar la expresión de entrada booleana
simplified_s_expr = sympy.simplify_logic(sympy_s_expr, force=True)
simplified_s_expr = sympy.logic.boolalg.to_dnf(sympy_s_expr, simplify=True)
except Exception as e:
print(f"Error simplifying '{pin_in}' input for {instr_type_original} {instr_uid}: {e}")
simplified_s_expr = sympy_s_expr # Fallback
s_scl = sympy_expr_to_scl(simplified_s_expr, symbol_manager)
# tv normalmente es constante, sympy_expr_to_scl debería manejarlo
tv_scl = sympy_expr_to_scl(sympy_or_const_tv, symbol_manager)
# 5. Generar la llamada SCL
# Ignoramos 'r' (reset) de Se si existiera
scl_call = f"{instance_name_scl}(IN := {s_scl}, PT := {tv_scl}); // TODO: Declarar {instance_name_scl} : {scl_timer_type};"
# 6. Actualizar instrucción con el SCL final
instruction["scl"] = scl_call instruction["scl"] = scl_call
instruction["type"] = instr_type_original + SCL_SUFFIX # Marcar como procesado instruction["type"] = instr_type + SCL_SUFFIX
# 7. Actualizar sympy_map para las salidas (Q y ET si aplica) # 5. Actualizar scl_map usando los nombres de pin ORIGINALES mapeados si existen
# Usar los nombres de pin originales determinados al principio output_pin_mapping_reverse = {v: k for k, v in instruction.get("_output_pin_mapping", {}).items()} # Necesitaríamos guardar el mapeo en x1
map_key_q = (network_id, instr_uid, pin_out_q) # pin_out_q es 'q' o 'out'
q_output_scl_access = f"{instance_name_scl}.Q" # Siempre accedemos a .Q del FB SCL
# *** OBTENER/CREAR Y ALMACENAR SYMBOL para la salida booleana Q ***
sympy_q_symbol = symbol_manager.get_symbol(q_output_scl_access)
if sympy_q_symbol:
sympy_map[map_key_q] = sympy_q_symbol # Almacenar el OBJETO SYMBOL
else:
# Manejar error si no se pudo crear el símbolo
print(f"Error: No se pudo crear símbolo para {q_output_scl_access} en {instr_type_original} {instr_uid}")
sympy_map[map_key_q] = None # Indicar error/irresoluble
# Almacenar ET solo si corresponde (para Se, no para SdCoil) q_original_pin = "q" # Default
if pin_out_time: # pin_out_time es 'rt' o None rt_original_pin = "rt" # Default
map_key_rt = (network_id, instr_uid, pin_out_time)
# ET es TIME, no booleano. Almacenar el string SCL de acceso está bien. # Intentar encontrar los pines originales si x1 guardó el mapeo (MEJORA NECESARIA en x1)
sympy_map[map_key_rt] = f"{instance_name_scl}.ET" # Salida ET del FB SCL # Por ahora, para SdCoil que mapeaba out->q, usaremos 'out' directamente
if instruction.get("type") == "Se_scl" and instruction.get("original_type") == "SdCoil": # Necesitamos guardar original_type en x1
q_original_pin = "out"
# rt no existe en SdCoil
map_key_q = (network_id, instr_uid, q_original_pin)
scl_map[map_key_q] = f"{instance_name}.Q"
if rt_original_pin: # Solo añadir rt si corresponde
map_key_rt = (network_id, instr_uid, rt_original_pin)
scl_map[map_key_rt] = f"{instance_name}.ET"
return True return True
# --- Procesador para Sd (On-Delay Timer -> TON SCL) ---
# --- Function code ends ---
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve la info para Se (-> TP) y SdCoil (-> TON, manejado aquí).""" """Devuelve la información para el temporizador de Pulso (Se -> TP) y maneja SdCoil."""
# Asumiendo que el tipo en el JSON es 'Se'
# Y que SdCoil también se mapea aquí según el análisis previo
return [ return [
{'type_name': 'se', 'processor_func': process_se, 'priority': 5}, {'type_name': 'se', 'processor_func': process_se, 'priority': 5},
# Asegurarse que x1.py mapea SdCoil a este procesador o a uno específico {'type_name': 'sdcoil', 'processor_func': process_se, 'priority': 5} # SdCoil también se procesa como TP
{'type_name': 'sdcoil', 'processor_func': process_se, 'priority': 5}
] ]

View File

@ -1,84 +1,69 @@
# processors/process_timer.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sympy from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
import traceback
# Usar las nuevas utilidades
from .processor_utils import get_sympy_representation, sympy_expr_to_scl, format_variable_name, get_target_scl_name
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed"
def process_timer(instruction, network_id, sympy_map, symbol_manager: SymbolManager, data): # TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_timer(instruction, network_id, scl_map, access_map, data):
""" """
Genera SCL para Temporizadores (TON, TOF) directamente. Genera SCL para Temporizadores (TON, TOF).
Requiere datos de instancia. Requiere datos de instancia (DB o STAT).
""" """
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "").replace(SCL_SUFFIX,"").replace("_error","") # TON o TOF instr_type = instruction["type"] # Será "TON" o "TOF"
if instruction.get("type","").endswith(SCL_SUFFIX) or "_error" in instruction.get("type",""): if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False return False
scl_timer_type = instr_type_original.upper() # 1. Obtener Inputs
if scl_timer_type not in ["TON", "TOF"]: in_info = instruction["inputs"].get("IN") # Entrada booleana
instruction["scl"] = f"// ERROR: Tipo de temporizador directo no soportado: {instr_type_original}" pt_info = instruction["inputs"].get("PT") # Preset Time (Tipo TIME)
instruction["type"] = instr_type_original + "_error" scl_in = get_scl_representation(in_info, network_id, scl_map, access_map)
return True scl_pt = get_scl_representation(pt_info, network_id, scl_map, access_map)
# 1. Obtener Inputs: IN, PT, y nombre de instancia (implícito o explícito) if scl_in is None or scl_pt is None:
in_info = instruction["inputs"].get("IN") return False # Dependencias no listas
pt_info = instruction["inputs"].get("PT")
# Buscar instancia: ¿está en inputs? ¿o como instance_db?
instance_plc_name = instruction.get("instance_db") # Buscar primero aquí
if not instance_plc_name:
# Si no, buscar un input llamado 'timer' o similar? No estándar.
# Asumir que debe estar declarado como STAT si no hay instance_db
instance_plc_name = instruction.get("instance_name") # Nombre directo?
if not instance_plc_name:
instance_plc_name = f"#{scl_timer_type}_INSTANCE_{instr_uid}" # Placeholder final
print(f"Advertencia: No se encontró nombre/instancia para {instr_type_original} UID {instr_uid}. Usando placeholder '{instance_plc_name}'.")
# 2. Obtener Nombre de Instancia (NECESITA MEJORA EN x1.py)
sympy_in_expr = get_sympy_representation(in_info, network_id, sympy_map, symbol_manager) instance_name = instruction.get("instance_db") # Reutilizar campo si x1 lo llena
sympy_or_const_pt = get_sympy_representation(pt_info, network_id, sympy_map, symbol_manager) if not instance_name:
# Generar placeholder si x1 no extrajo la instancia para Part
# Verificar dependencias instance_name = f"#TIMER_INSTANCE_{instr_uid}" # Placeholder para VAR_TEMP o VAR_STAT
if sympy_in_expr is None or sympy_or_const_pt is None or instance_plc_name is None: print(f"Advertencia: No se encontró instancia para {instr_type} UID {instr_uid}. Usando placeholder '{instance_name}'. Ajustar x1.py y declarar en x3.py.")
return False
# Formatear nombre de instancia
instance_name_scl = format_variable_name(instance_plc_name)
# Convertir entradas SymPy/Constante a SCL strings
in_scl = sympy_expr_to_scl(sympy_in_expr, symbol_manager)
pt_scl = sympy_expr_to_scl(sympy_or_const_pt, symbol_manager)
# Generar la llamada SCL
scl_call = f"{instance_name_scl}(IN := {in_scl}, PT := {pt_scl}); // TODO: Declarar {instance_name_scl} : {scl_timer_type};"
# Actualizar instrucción
instruction["scl"] = scl_call # SCL final generado
instruction["type"] = instr_type_original + SCL_SUFFIX
# 7. Actualizar sympy_map para las salidas Q y ET
map_key_q = (network_id, instr_uid, "Q") # Pin estándar SCL
# *** Store SymPy Symbol for boolean output Q ***
q_output_scl_access = f"{instance_name_scl}.Q" # String for SCL access
sympy_q_symbol = symbol_manager.get_symbol(q_output_scl_access) # Get/Create Symbol
if sympy_q_symbol:
sympy_map[map_key_q] = sympy_q_symbol # Store the SYMBOL
else: else:
print(f"Error: Could not create symbol for {q_output_scl_access} in {instr_type_original} {instr_uid}") instance_name = format_variable_name(instance_name) # Limpiar si viene de x1
sympy_map[map_key_q] = None
map_key_et = (network_id, instr_uid, "ET") # Pin estándar SCL # 3. Formatear entradas si son variables
# ET is TIME, store SCL access string scl_in_formatted = format_variable_name(scl_in) if in_info and in_info.get("type") == "variable" else scl_in
sympy_map[map_key_et] = f"{instance_name_scl}.ET" scl_pt_formatted = format_variable_name(scl_pt) if pt_info and pt_info.get("type") == "variable" else scl_pt
# 4. Generar la llamada SCL
# Nota: Las salidas Q y ET se acceden directamente desde la instancia.
scl_call = f"{instance_name}(IN := {scl_in_formatted}, PT := {scl_pt_formatted}); // TODO: Declarar {instance_name} : {instr_type}; en VAR_STAT o VAR"
instruction["scl"] = scl_call
instruction["type"] = instr_type + SCL_SUFFIX
# 5. Actualizar scl_map para las salidas Q y ET
map_key_q = (network_id, instr_uid, "Q")
scl_map[map_key_q] = f"{instance_name}.Q"
map_key_et = (network_id, instr_uid, "ET")
scl_map[map_key_et] = f"{instance_name}.ET"
# TON/TOF no tienen un pin ENO estándar en LAD/FBD que se mapee directamente
return True return True
# --- Processor Information Function --- # --- Processor Information Function ---
def get_processor_info(): def get_processor_info():
"""Devuelve info para TON y TOF directos.""" """Devuelve la información para los temporizadores TON y TOF (si se usan genéricamente)."""
# Esta función manejaría tipos TON/TOF si aparecieran directamente en el JSON
# y no fueran manejados por process_sd/process_se (que es lo más común desde LAD).
# Incluir por si acaso o si la conversión inicial genera TON/TOF directamente.
return [ return [
{'type_name': 'ton', 'processor_func': process_timer, 'priority': 5}, {'type_name': 'ton', 'processor_func': process_timer, 'priority': 5},
{'type_name': 'tof', 'processor_func': process_timer, 'priority': 5} {'type_name': 'tof', 'processor_func': process_timer, 'priority': 5}

View File

@ -1,11 +1,15 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
# processors/processor_utils.py # /processors/processor_utils.py
# Procesador de utilidades para el procesamiento de archivos XML de Simatic
import re import re
import sympy
from .symbol_manager import SymbolManager, extract_plc_variable_name
SCL_SUFFIX = "_sympy_processed" # <<< AÑADE ESTA LÍNEA # --- Copia aquí las funciones auxiliares ---
# get_scl_representation, format_variable_name,
# generate_temp_var_name, get_target_scl_name
# Asegúrate de que no dependen de variables globales de x2_process.py
# (como 'data' o 'network_access_maps' - esas se pasarán como argumentos)
# Ejemplo de una función (asegúrate de copiar todas las necesarias)
def format_variable_name(name): def format_variable_name(name):
"""Limpia el nombre de la variable para SCL.""" """Limpia el nombre de la variable para SCL."""
if not name: if not name:
@ -21,116 +25,8 @@ def format_variable_name(name):
name = re.sub(r"[^a-zA-Z0-9_]", "_", name) name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
return prefix + name return prefix + name
def get_sympy_representation(source_info, network_id, sympy_map, symbol_manager): # --- Helper Functions ---
"""Gets the SymPy expression object representing the source.""" # (get_scl_representation, format_variable_name, generate_temp_var_name, get_target_scl_name - sin cambios)
if not source_info:
print("Warning: get_sympy_representation called with None source_info.")
return None # Or raise error
# Handle lists (OR branches) - Recursively call and combine with sympy.Or
if isinstance(source_info, list):
sympy_parts = []
all_resolved = True
for sub_source in source_info:
sub_sympy = get_sympy_representation(sub_source, network_id, sympy_map, symbol_manager)
if sub_sympy is None:
all_resolved = False
break
sympy_parts.append(sub_sympy)
if not all_resolved:
return None
if not sympy_parts:
return sympy.false # Empty OR is false
# Return sympy.Or only if there are multiple parts
return sympy.Or(*sympy_parts) if len(sympy_parts) > 1 else sympy_parts[0]
# Handle single source dictionary
source_type = source_info.get("type")
if source_type == "powerrail":
return sympy.true
elif source_type == "variable":
plc_name = extract_plc_variable_name(source_info)
if plc_name:
return symbol_manager.get_symbol(plc_name)
else:
print(f"Error: Variable source without name: {source_info}")
return None # Error case
elif source_type == "constant":
# Represent constants directly if possible, otherwise maybe as symbols?
# For boolean simplification, only TRUE/FALSE matter significantly.
dtype = str(source_info.get("datatype", "")).upper()
value = source_info.get("value")
if dtype == "BOOL":
return sympy.true if str(value).upper() == "TRUE" else sympy.false
else:
# For simplification, treat non-boolean constants as opaque symbols?
# Or just return their string representation if they won't be simplified anyway?
# Let's return their string value for now, processors will handle it.
# This might need refinement if constants need symbolic handling.
return str(value) # Or maybe symbol_manager.get_symbol(str(value))?
elif source_type == "connection":
map_key = (
network_id,
source_info.get("source_instruction_uid"),
source_info.get("source_pin"),
)
# Return the SymPy object from the map
return sympy_map.get(map_key) # Returns None if not found (dependency not ready)
elif source_type == "unknown_source":
print(f"Warning: Referring to unknown source UID: {source_info.get('uid')}")
return None # Cannot resolve
else:
print(f"Warning: Unknown source type: {source_info}")
return None # Cannot resolve
def sympy_expr_to_scl(expr, symbol_manager, format_prec=5):
"""Converts a SymPy expression to an SCL string using the symbol map."""
if expr is None: return "/* ERROR: None expression */"
if expr == sympy.true: return "TRUE"
if expr == sympy.false: return "FALSE"
# Use sympy's string printer with custom settings if needed
# For boolean, standard printing might be okay, but need to substitute symbols
try:
# Get the inverse map (py_id -> plc_name)
inverse_map = symbol_manager.get_inverse_map()
# Substitute symbols back to their py_id strings first
# Need to handle the structure (And, Or, Not)
scl_str = sympy.sstr(expr, order=None) # Basic string representation
# Now, carefully replace py_id back to PLC names using regex
# Sort keys by length descending to replace longer IDs first
for py_id in sorted(inverse_map.keys(), key=len, reverse=True):
# Use word boundaries to avoid replacing parts of other IDs
scl_str = re.sub(r'\b' + re.escape(py_id) + r'\b', inverse_map[py_id], scl_str)
# Replace SymPy operators/functions with SCL equivalents
scl_str = scl_str.replace('&', ' AND ')
scl_str = scl_str.replace('|', ' OR ')
scl_str = scl_str.replace('^', ' XOR ') # If XOR is used
scl_str = scl_str.replace('~', 'NOT ')
# Add spaces around operators if needed after substitution
scl_str = re.sub(r'AND', ' AND ', scl_str)
scl_str = re.sub(r'OR', ' OR ', scl_str)
scl_str = re.sub(r'XOR', ' XOR ', scl_str)
scl_str = re.sub(r'NOT', 'NOT ', scl_str) # Space after NOT
# Clean up potential double spaces, etc.
scl_str = re.sub(r'\s+', ' ', scl_str).strip()
# Handle parentheses potentially added by sstr - maybe remove redundant ones?
# Be careful not to break operator precedence.
return scl_str
except Exception as e:
print(f"Error converting SymPy expr '{expr}' to SCL: {e}")
traceback.print_exc()
return f"/* ERROR converting SymPy: {expr} */"
def get_scl_representation(source_info, network_id, scl_map, access_map): def get_scl_representation(source_info, network_id, scl_map, access_map):
if not source_info: if not source_info:
return None return None
@ -258,53 +154,56 @@ def generate_temp_var_name(network_id, instr_uid, pin_name):
# Usar # para variables temporales SCL estándar # Usar # para variables temporales SCL estándar
return f"#_temp_{net_id_clean}_{instr_uid_clean}_{pin_name_clean}" return f"#_temp_{net_id_clean}_{instr_uid_clean}_{pin_name_clean}"
def get_target_scl_name(instruction, pin_name, network_id, default_to_temp=True): def get_target_scl_name(instruction, output_pin_name, network_id, default_to_temp=True):
"""Gets the SCL formatted name for a target variable.
Handles instruction outputs AND specific inputs like Coil operand.
"""
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
# Ahora SCL_SUFFIX está definido en este módulo output_pin_data = instruction["outputs"].get(output_pin_name)
instr_type_upper = instruction.get("type", "").upper().replace(SCL_SUFFIX.upper(), "").replace("_ERROR", "") # Check original type
target_info = None
# Special handling for inputs that represent the target variable
if instr_type_upper in ["COIL", "SCOIL", "RCOIL"] and pin_name == "operand":
target_info = instruction.get("inputs", {}).get("operand")
# Add other instructions where input pin == target if necessary
# elif instr_type_upper == "XYZ" and pin_name == "some_input_target_pin":
# target_info = instruction.get("inputs", {}).get(pin_name)
else:
# Default: Assume pin_name refers to an output pin
output_pin_data = instruction.get("outputs", {}).get(pin_name)
# Check if it's a list and has one connection (standard case)
if (output_pin_data and isinstance(output_pin_data, list) and len(output_pin_data) == 1):
target_info = output_pin_data[0]
# Add handling for direct output assignment if your JSON structure supports it
target_scl = None target_scl = None
if target_info: if (
if target_info.get("type") == "variable": output_pin_data
plc_name = target_info.get("name") and isinstance(output_pin_data, list)
if plc_name: and len(output_pin_data) == 1
target_scl = format_variable_name(plc_name) # Use existing util ):
else: dest_access = output_pin_data[0]
print(f"Error: Target variable for {instr_uid}.{pin_name} has no name (UID: {target_info.get('uid')}).") if dest_access.get("type") == "variable":
elif target_info.get("type") == "constant": target_scl = dest_access.get("name")
print(f"Advertencia: Attempt to write to constant target {instr_uid}.{pin_name} (UID: {target_info.get('uid')}).")
# else: # Handle other target types if needed
# print(f"Advertencia: Target {instr_uid}.{pin_name} is not a variable: {target_info.get('type')}.")
# else: # No target info found for the specified pin
# print(f"DEBUG: No target info found for {instr_uid}.{pin_name}")
pass
# Handle default_to_temp logic
if target_scl: if target_scl:
return target_scl target_scl = format_variable_name(target_scl) # Formatear nombre
elif default_to_temp:
# Generate temp only if no explicit target was found AND default is allowed
print(f"INFO: Generating temp var for {instr_uid}.{pin_name}") # Be informative
return generate_temp_var_name(network_id, instr_uid, pin_name)
else: else:
# No target found and default temps not allowed print(
f"Error: Var destino {instr_uid}.{output_pin_name} sin nombre (UID: {dest_access.get('uid')}). {'Usando temp.' if default_to_temp else 'Ignorando.'}"
)
target_scl = (
generate_temp_var_name(network_id, instr_uid, output_pin_name)
if default_to_temp
else None
)
elif dest_access.get("type") == "constant":
print(
f"Advertencia: Instr {instr_uid} escribe en const UID {dest_access.get('uid')}. {'Usando temp.' if default_to_temp else 'Ignorando.'}"
)
target_scl = (
generate_temp_var_name(network_id, instr_uid, output_pin_name)
if default_to_temp
else None
)
else:
print(
f"Advertencia: Destino {instr_uid}.{output_pin_name} no es var/const: {dest_access.get('type')}. {'Usando temp.' if default_to_temp else 'Ignorando.'}"
)
target_scl = (
generate_temp_var_name(network_id, instr_uid, output_pin_name)
if default_to_temp
else None
)
elif default_to_temp:
target_scl = generate_temp_var_name(network_id, instr_uid, output_pin_name)
# Si target_scl sigue siendo None y no se debe usar temp, devolver None
if target_scl is None and not default_to_temp:
return None return None
# Si target_scl es None pero sí se permite temp, generar uno ahora
if target_scl is None and default_to_temp:
target_scl = generate_temp_var_name(network_id, instr_uid, output_pin_name)
return target_scl

View File

@ -1,58 +0,0 @@
# processors/symbol_manager.py
import sympy
import re
class SymbolManager:
def __init__(self):
# plc_name -> py_id (e.g., '"DB".Var' -> 'v0_')
self.plc_to_py_id = {}
# py_id -> Symbol object (e.g., 'v0_' -> sympy.Symbol('v0_'))
self.py_id_to_symbol = {}
# py_id -> plc_name (e.g., 'v0_' -> '"DB".Var') - Inverse mapping
self.py_id_to_plc = {}
self.counter = 0
# Pre-define common keywords/constants to avoid mapping them
self.reserved_names = {"TRUE", "FALSE"} # Add others if needed
def _generate_py_id(self):
py_id = f"v{self.counter}_"
self.counter += 1
# Extremely unlikely collision, but check anyway
while py_id in self.py_id_to_symbol:
py_id = f"v{self.counter}_"
self.counter += 1
return py_id
def get_symbol(self, plc_var_name):
"""Gets/Creates a SymPy Symbol for a PLC variable name."""
if plc_var_name is None:
print("Warning: Attempted to get symbol for None PLC name.")
return None # Or handle error appropriately
if plc_var_name.upper() in self.reserved_names:
print(f"Warning: Attempted to create symbol for reserved name: {plc_var_name}")
return None # Or handle differently (e.g., return sympy.true/false?)
if plc_var_name not in self.plc_to_py_id:
py_id = self._generate_py_id()
self.plc_to_py_id[plc_var_name] = py_id
self.py_id_to_plc[py_id] = plc_var_name
self.py_id_to_symbol[py_id] = sympy.symbols(py_id)
# print(f"DEBUG SymbolManager: Created {py_id} -> {plc_var_name}") # Debug
else:
py_id = self.plc_to_py_id[plc_var_name]
return self.py_id_to_symbol.get(py_id)
def get_plc_name(self, py_id):
"""Gets the original PLC name from a py_id."""
return self.py_id_to_plc.get(py_id)
def get_inverse_map(self):
"""Returns the map needed for postprocessing (py_id -> plc_name)."""
return self.py_id_to_plc.copy()
# Helper function to extract PLC variable name from JSON operand info
def extract_plc_variable_name(operand_info):
if operand_info and operand_info.get("type") == "variable":
return operand_info.get("name")
return None # Not a variable or info missing

View File

@ -2,7 +2,6 @@
import json import json
import argparse import argparse
import os import os
import re
from lxml import etree from lxml import etree
import traceback import traceback
from collections import defaultdict from collections import defaultdict
@ -12,8 +11,7 @@ from collections import defaultdict
ns = { ns = {
"iface": "http://www.siemens.com/automation/Openness/SW/Interface/v5", "iface": "http://www.siemens.com/automation/Openness/SW/Interface/v5",
"flg": "http://www.siemens.com/automation/Openness/SW/NetworkSource/FlgNet/v4", "flg": "http://www.siemens.com/automation/Openness/SW/NetworkSource/FlgNet/v4",
"st": "http://www.siemens.com/automation/Openness/SW/NetworkSource/StructuredText/v3", "st": "http://www.siemens.com/automation/Openness/SW/NetworkSource/StructuredText/v3", # <--- Added SCL namespace
"stl": "http://www.siemens.com/automation/Openness/SW/NetworkSource/StatementList/v4",
} }
@ -46,6 +44,7 @@ def get_multilingual_text(element, default_lang="en-US", fallback_lang="it-IT"):
print(f"Advertencia: Error extrayendo MultilingualText: {e}") print(f"Advertencia: Error extrayendo MultilingualText: {e}")
return "" return ""
def get_symbol_name(symbol_element): def get_symbol_name(symbol_element):
# (Sin cambios respecto a la versión anterior) # (Sin cambios respecto a la versión anterior)
if symbol_element is None: if symbol_element is None:
@ -57,6 +56,7 @@ def get_symbol_name(symbol_element):
print(f"Advertencia: Excepción en get_symbol_name: {e}") print(f"Advertencia: Excepción en get_symbol_name: {e}")
return None return None
def parse_access(access_element): def parse_access(access_element):
# (Sin cambios respecto a la versión anterior) # (Sin cambios respecto a la versión anterior)
if access_element is None: if access_element is None:
@ -149,6 +149,7 @@ def parse_access(access_element):
return info return info
return info return info
def parse_part(part_element): def parse_part(part_element):
# (Sin cambios respecto a la versión anterior) # (Sin cambios respecto a la versión anterior)
if part_element is None: if part_element is None:
@ -184,6 +185,7 @@ def parse_part(part_element):
"negated_pins": negated_pins, "negated_pins": negated_pins,
} }
def parse_call(call_element): def parse_call(call_element):
# (Mantiene la corrección para DB de instancia) # (Mantiene la corrección para DB de instancia)
if call_element is None: if call_element is None:
@ -243,24 +245,23 @@ def parse_call(call_element):
call_data["instance_scope"] = instance_scope call_data["instance_scope"] = instance_scope
return call_data return call_data
# SCL (Structured Text) Parser
# EN x1_to_json.py, junto a otras funciones auxiliares
def reconstruct_scl_from_tokens(st_node): def reconstruct_scl_from_tokens(st_node):
""" """
Reconstruye una cadena SCL a partir de los elementos hijos Intenta reconstruir una cadena SCL a partir de los elementos hijos
de un nodo <StructuredText>, manejando Tokens, Access (Variables y Constantes), de un nodo <StructuredText>. Es una aproximación y puede no ser perfecta.
saltos de línea, espacios y comentarios.
""" """
if st_node is None: if st_node is None:
return "// Error: StructuredText node not found.\n" return "// Error: StructuredText node not found.\n"
scl_parts = [] scl_parts = []
# Obtener todos los elementos hijos directos en orden # Obtener todos los elementos hijos directos en orden
# Usamos '*' para obtener todos los hijos y luego filtramos por tag
children = st_node.xpath("./st:*", namespaces=ns) children = st_node.xpath("./st:*", namespaces=ns)
for elem in children: for elem in children:
# Obtener el nombre local de la etiqueta sin el namespace
tag = etree.QName(elem.tag).localname tag = etree.QName(elem.tag).localname
if tag == "Token": if tag == "Token":
@ -268,74 +269,74 @@ def reconstruct_scl_from_tokens(st_node):
elif tag == "Blank": elif tag == "Blank":
scl_parts.append(" " * int(elem.get("Num", 1))) scl_parts.append(" " * int(elem.get("Num", 1)))
elif tag == "NewLine": elif tag == "NewLine":
# Añadir un salto de línea real. strip() al final de la línea actual
# para evitar espacios extra antes del salto.
scl_parts.append("\n") scl_parts.append("\n")
elif tag == "Access": elif tag == "Access":
scope = elem.get("Scope") # Reconstruir acceso (simplificado)
access_str = f"_{scope}_?" # Fallback symbol_parts = []
# Buscar componentes y puntos dentro del símbolo de este acceso
symbol_children = elem.xpath(
".//st:Component | .//st:Token[@Text='.']", namespaces=ns
)
for sym_child in symbol_children:
sym_tag = etree.QName(sym_child.tag).localname
if sym_tag == "Component":
comp_name = sym_child.get("Name", "_ERR_")
# Comprobar si necesita comillas (podríamos necesitar parsear BooleanAttribute)
# Simplificación: Añadir comillas si el nombre original parece tenerlas (o siempre para DBs?)
# Aquí usamos el nombre tal cual viene en el XML por ahora
# Si el XML tiene <BooleanAttribute Name="HasQuotes">true</BooleanAttribute> podríamos usarlo
has_quotes_elem = sym_child.xpath(
"../st:BooleanAttribute[@Name='HasQuotes']/text()",
namespaces=ns,
)
has_quotes = (
has_quotes_elem and has_quotes_elem[0].lower() == "true"
)
if scope == "GlobalVariable" or scope == "LocalVariable": # Reconstrucción básica: poner comillas si HasQuotes es true o si es el primer componente (posible DB)
symbol_elem = elem.xpath("./st:Symbol", namespaces=ns) # Esto es heurístico y puede fallar.
if symbol_elem: # if has_quotes or (len(symbol_parts) == 0 and '.' not in comp_name): # Asumir primer componente es DB
components = symbol_elem[0].xpath("./st:Component | ./st:Token[@Text='.']", namespaces=ns) # symbol_parts.append(f'"{comp_name}"')
symbol_text_parts = [] # else:
for comp in components: # symbol_parts.append(comp_name)
comp_tag = etree.QName(comp.tag).localname
if comp_tag == "Component":
name = comp.get("Name", "_ERR_COMP_")
# Comprobar si necesita comillas (requiere BooleanAttribute)
# Simplificación: Añadir comillas si el nombre original parece tenerlas
has_quotes_elem = comp.xpath("../st:BooleanAttribute[@Name='HasQuotes']/text()", namespaces=ns)
has_quotes = has_quotes_elem and has_quotes_elem[0].lower() == "true"
# Heurística: Usar comillas si HasQuotes=true o si es el primer componente y no es TEMP (#) # Versión más simple: usar nombre tal cual del XML
if has_quotes or (len(symbol_text_parts) == 0 and not name.startswith('#')): symbol_parts.append(comp_name)
symbol_text_parts.append(f'"{name}"')
else:
symbol_text_parts.append(name)
# Manejar índices de array (simplificado) elif sym_tag == "Token": # Solo nos interesa el punto aquí
index_access = comp.xpath("./st:Access", namespaces=ns) symbol_parts.append(".")
if index_access: access_str = "".join(symbol_parts)
indices_text = [reconstruct_scl_from_tokens(idx_node) for idx_node in index_access] # Llamada recursiva
symbol_text_parts.append(f"[{','.join(indices_text)}]")
elif comp_tag == "Token": # Es un punto # Manejar llamadas a funciones/FB dentro de Access Scope="Call"
# Asegurarse de no añadir puntos duplicados si ya están en las partes if elem.get("Scope") == "Call":
if symbol_text_parts and symbol_text_parts[-1] != ".": instruction_elem = elem.xpath("./st:Instruction", namespaces=ns)
symbol_text_parts.append(".") if instruction_elem:
# Limpiar posibles puntos extra al inicio/final o dobles instr_name = instruction_elem[0].get("Name", "_UNKNOWN_CALL_")
access_str = "".join(symbol_text_parts).strip('.') # Reconstrucción básica de parámetros (muy simplificada)
access_str = re.sub(r'\.+', '.', access_str) # Reemplazar múltiples puntos con uno solo # Necesitaría parsear Parameters, Tokens '(', ')', ':=', '=>', etc.
# Por ahora, solo añadimos el nombre y paréntesis vacíos
access_str = f"{instr_name}()" # Placeholder muy básico
elif scope == "LiteralConstant":
constant_elem = elem.xpath("./st:Constant", namespaces=ns)
if constant_elem:
val_elem = constant_elem[0].xpath("./st:ConstantValue/text()", namespaces=ns)
# **CORRECCIÓN CLAVE**: Extraer el valor y usarlo
access_str = val_elem[0] if val_elem else "_ERR_CONSTVAL_"
else:
access_str = "_ERR_NOCONST_"
# Añadir manejo para otros scopes si es necesario (Address, Call, etc.)
# elif scope == "Call": ...
# elif scope == "Address": ...
scl_parts.append(access_str) scl_parts.append(access_str)
elif tag == "Comment" or tag == "LineComment": elif tag == "Comment" or tag == "LineComment":
# Manejo de comentarios (simplificado - asume texto directo) # Añadir comentarios
comment_text = "".join(elem.xpath(".//text()")).strip() comment_text = elem.text if elem.text else ""
if tag == "Comment": # Comentario tipo (* *) if tag == "Comment" and "\n" in comment_text: # Comentario multi-línea
scl_parts.append(f"(* {comment_text} *)") scl_parts.append(f"(*{comment_text}*)")
else: # Comentario tipo // else: # Comentario de una línea
scl_parts.append(f"// {comment_text}") scl_parts.append(f"// {comment_text}")
# else: # Ignorar otros tipos de nodos por ahora else:
# pass # Ignorar otros tipos de nodos por ahora o añadir manejo específico
pass
# Unir todas las partes # Unir todas las partes, limpiar espacios extra alrededor de saltos de línea
full_scl = "".join(scl_parts) full_scl = "".join(scl_parts)
# Limpieza básica de formato (puede necesitar ajustes) # Limpieza básica de formato
lines = [line.rstrip() for line in full_scl.split('\n')] lines = [line.rstrip() for line in full_scl.split("\n")]
# Re-ensamblar, asegurando que líneas vacías (solo espacios previos) se mantengan
cleaned_scl = "\n".join(lines) cleaned_scl = "\n".join(lines)
# Eliminar múltiples líneas vacías consecutivas (opcional) # Eliminar múltiples líneas vacías consecutivas (opcional)
# import re # import re
@ -343,236 +344,9 @@ def reconstruct_scl_from_tokens(st_node):
return cleaned_scl.strip() # Quitar espacios/saltos al inicio/final return cleaned_scl.strip() # Quitar espacios/saltos al inicio/final
# STL (Statement List) Parser
def get_access_text(access_element):
"""Reconstruye una representación textual simple de un Access en STL."""
if access_element is None:
return "_ERR_ACCESS_"
scope = access_element.get("Scope")
# Intenta reconstruir el símbolo
# CORREGIDO: Añadido namespaces=ns
symbol_elem = access_element.xpath("./stl:Symbol", namespaces=ns)
if symbol_elem:
# CORREGIDO: Añadido namespaces=ns
components = symbol_elem[0].xpath("./stl:Component", namespaces=ns)
parts = []
for comp in components:
name = comp.get("Name", "_ERR_COMP_")
# CORREGIDO: Añadido namespaces=ns
has_quotes_elem = comp.xpath("../stl:BooleanAttribute[@Name='HasQuotes']/text()", namespaces=ns)
has_quotes = has_quotes_elem and has_quotes_elem[0].lower() == "true"
# Usar nombre tal cual por ahora
parts.append(name)
# Añadir índices si existen
# CORREGIDO: Añadido namespaces=ns
index_access = comp.xpath("./stl:Access", namespaces=ns)
if index_access:
indices = [get_access_text(ia) for ia in index_access]
parts.append(f"[{','.join(indices)}]")
return ".".join(parts)
# Intenta reconstruir constante
# CORREGIDO: Añadido namespaces=ns
constant_elem = access_element.xpath("./stl:Constant", namespaces=ns)
if constant_elem:
# CORREGIDO: Añadido namespaces=ns
val_elem = constant_elem[0].xpath("./stl:ConstantValue/text()", namespaces=ns)
type_elem = constant_elem[0].xpath("./stl:ConstantType/text()", namespaces=ns) # Obtener tipo para mejor formato
const_type = type_elem[0] if type_elem else ""
const_val = val_elem[0] if val_elem else "_ERR_CONST_"
# Añadir prefijo de tipo si es necesario (ej. T# , L#) - Simplificado
if const_type == "Time": return f"T#{const_val}"
if const_type == "ARef": return f"{const_val}" # No necesita prefijo
# Añadir más tipos si es necesario
return const_val # Valor directo para otros tipos
# Intenta reconstruir etiqueta
# CORREGIDO: Añadido namespaces=ns
label_elem = access_element.xpath("./stl:Label", namespaces=ns)
if label_elem:
name = label_elem[0].get("Name", "_ERR_LABEL_")
return name
# Intenta reconstruir acceso indirecto (simplificado)
# CORREGIDO: Añadido namespaces=ns
indirect_elem = access_element.xpath("./stl:Indirect", namespaces=ns)
if indirect_elem:
reg = indirect_elem[0].get("Register", "AR?")
offset_str = indirect_elem[0].get("BitOffset", "0")
area = indirect_elem[0].get("Area", "DB")
width = indirect_elem[0].get("Width", "X")
# Convertir BitOffset a formato P#Byte.Bit
try:
bit_offset = int(offset_str)
byte_offset = bit_offset // 8
bit_in_byte = bit_offset % 8
p_format_offset = f"P#{byte_offset}.{bit_in_byte}"
except ValueError:
p_format_offset = "P#?.?"
# Formatear ancho
width_map = {"Bit": "X", "Byte": "B", "Word": "W", "Double": "D"}
width_char = width_map.get(width, width[0] if width else "?") # Usa primera letra si no mapeado
return f"{area}{width_char}[{reg},{p_format_offset}]"
# Intenta reconstruir dirección absoluta
# CORREGIDO: Añadido namespaces=ns
address_elem = access_element.xpath("./stl:Address", namespaces=ns)
if address_elem:
area = address_elem[0].get("Area", "??")
bit_offset_str = address_elem[0].get("BitOffset", "0")
addr_type_str = address_elem[0].get("Type", "Bool") # Obtener tipo para ancho
try:
bit_offset = int(bit_offset_str)
byte_offset = bit_offset // 8
bit_in_byte = bit_offset % 8
# Determinar ancho basado en tipo (simplificación)
addr_width = "X" # Default a Bit
if addr_type_str == "Byte": addr_width = "B"
elif addr_type_str == "Word": addr_width = "W"
elif addr_type_str in ["DWord", "DInt"]: addr_width = "D"
# Añadir más tipos si es necesario (Real, etc.)
# Mapear Area para STL estándar
area_map = { "Input": "I", "Output": "Q", "Memory": "M",
"PeripheryInput": "PI", "PeripheryOutput": "PQ",
"DB": "DB", "DI": "DI", "Local": "L", # L no siempre válido aquí
"Timer": "T", "Counter": "C" }
stl_area = area_map.get(area, area)
# Manejar DB/DI que necesitan número de bloque
if stl_area in ["DB", "DI"]:
block_num = address_elem[0].get("BlockNumber")
if block_num:
return f"{stl_area}{block_num}.{stl_area}{addr_width}{byte_offset}.{bit_in_byte}" # Ej: DB1.DBX0.1
else: # Acceso con registro DB/DI
return f"{stl_area}{addr_width}{byte_offset}.{bit_in_byte}" # Ej: DBX0.1
elif stl_area in ["T", "C"]:
return f"{stl_area}{byte_offset}" # Los timers/contadores solo usan el número
else: # I, Q, M, L, PI, PQ
return f"{stl_area}{addr_width}{byte_offset}.{bit_in_byte}" # Ej: M10.1, I0.0
except ValueError:
return f"{area}?{bit_offset_str}?"
return f"_{scope}_?" # Fallback
def get_comment_text(comment_element):
"""Extrae texto de un LineComment o Comment."""
if comment_element is None: return ""
# Usar get_multilingual_text si los comentarios son multilingües
# Si no, extraer texto directamente
ml_texts = comment_element.xpath(".//mlt:MultilingualTextItem/mlt:AttributeList/mlt:Text/text()",
namespaces={'mlt': "http://www.siemens.com/automation/Openness/SW/Interface/v5"}) # Asumiendo ns
if ml_texts:
# Podrías intentar obtener un idioma específico o simplemente el primero
return ml_texts[0].strip() if ml_texts else ""
# Fallback a texto directo si no hay estructura multilingüe
text_nodes = comment_element.xpath("./text()")
return "".join(text_nodes).strip()
def reconstruct_stl_from_statementlist(statement_list_node):
"""Reconstruye el código STL como una cadena de texto desde <StatementList>."""
if statement_list_node is None:
return "// Error: StatementList node not found.\n"
stl_lines = []
# CORREGIDO: Añadido namespaces=ns
statements = statement_list_node.xpath("./stl:StlStatement", namespaces=ns)
for stmt in statements:
line_parts = []
line_comment = "" # Comentario al final de la línea
# 1. Comentarios al inicio de la línea (como líneas separadas //)
# CORREGIDO: Añadido namespaces=ns
initial_comments = stmt.xpath("child::stl:Comment | child::stl:LineComment", namespaces=ns)
for comm in initial_comments:
comment_text = get_comment_text(comm)
if comment_text:
# Dividir comentarios multilínea en varias líneas //
for comment_line in comment_text.splitlines():
stl_lines.append(f"// {comment_line}")
# 2. Etiqueta (si existe)
# CORREGIDO: Añadido namespaces=ns
label_decl = stmt.xpath("./stl:LabelDeclaration", namespaces=ns)
label_str = ""
if label_decl:
# CORREGIDO: Añadido namespaces=ns
label_name_nodes = label_decl[0].xpath("./stl:Label/@Name", namespaces=ns)
if label_name_nodes:
label_str = f"{label_name_nodes[0]}:"
# Buscar comentarios DENTRO de LabelDeclaration pero después de Label
# CORREGIDO: Añadido namespaces=ns
label_comments = label_decl[0].xpath("./stl:Comment | ./stl:LineComment", namespaces=ns)
for lcomm in label_comments:
comment_text = get_comment_text(lcomm)
if comment_text: line_comment += f" // {comment_text}" # Añadir al comentario de línea
# 3. Token de Instrucción STL
# CORREGIDO: Añadido namespaces=ns
instruction_token = stmt.xpath("./stl:StlToken", namespaces=ns)
instruction_str = ""
if instruction_token:
token_text = instruction_token[0].get("Text", "_ERR_TOKEN_")
instruction_str = token_text
# Comentarios asociados directamente al token
# CORREGIDO: Añadido namespaces=ns
token_comments = instruction_token[0].xpath("./stl:Comment | ./stl:LineComment", namespaces=ns)
for tcomm in token_comments:
comment_text = get_comment_text(tcomm)
if comment_text: line_comment += f" // {comment_text}" # Añadir al comentario de línea
# 4. Acceso/Operando STL
# CORREGIDO: Añadido namespaces=ns
access_elem = stmt.xpath("./stl:Access", namespaces=ns)
access_str = ""
if access_elem:
access_text = get_access_text(access_elem[0])
access_str = access_text
# Comentarios DENTRO del Access (pueden ser de línea o bloque)
# CORREGIDO: Añadido namespaces=ns
access_comments = access_elem[0].xpath("child::stl:LineComment | child::stl:Comment", namespaces=ns)
for acc_comm in access_comments:
comment_text = get_comment_text(acc_comm)
if comment_text: line_comment += f" // {comment_text}" # Añadir al comentario de línea
# Construir la línea: Etiqueta (si hay) + Tab + Instrucción + Espacio + Operando (si hay) + Comentario(s)
current_line = ""
if label_str:
current_line += label_str
if instruction_str:
if current_line: # Si ya había etiqueta, añadir tabulador
current_line += "\t"
current_line += instruction_str
if access_str:
if current_line: # Si ya había algo, añadir espacio
current_line += " "
current_line += access_str
if line_comment:
# Añadir espacio antes del comentario si hay código en la línea
if current_line.strip():
current_line += f" {line_comment}"
else: # Si la línea estaba vacía (solo comentarios iniciales), poner el comentario de línea
current_line = line_comment
# Añadir la línea construida solo si no está vacía
if current_line.strip():
stl_lines.append(current_line.rstrip()) # Eliminar espacios finales
return "\n".join(stl_lines)
# --- Main Parsing Function ---
# --- Función parse_network con XPath corregido para Title/Comment ---
# --- Función parse_network MODIFICADA (maneja multi-destino en Wire) ---
def parse_network(network_element): def parse_network(network_element):
""" """
Parsea una red, extrae lógica y añade conexiones EN implícitas. Parsea una red, extrae lógica y añade conexiones EN implícitas.
@ -1018,6 +792,8 @@ def parse_network(network_element):
"logic": network_logic_final, "logic": network_logic_final,
} }
# --- Función Principal convert_xml_to_json (sin cambios en su flujo general) ---
def convert_xml_to_json(xml_filepath, json_filepath): def convert_xml_to_json(xml_filepath, json_filepath):
print(f"Iniciando conversión de '{xml_filepath}' a '{json_filepath}'...") print(f"Iniciando conversión de '{xml_filepath}' a '{json_filepath}'...")
if not os.path.exists(xml_filepath): if not os.path.exists(xml_filepath):
@ -1213,38 +989,6 @@ def convert_xml_to_json(xml_filepath, json_filepath):
], ],
} }
# --- NUEVO MANEJO STL ---
elif programming_language == "STL":
statement_list_node = (
network_source_node.xpath("./stl:StatementList", namespaces=ns)
if network_source_node is not None
else None
)
reconstructed_stl = f"// STL extraction failed for Network {network_id}: StatementList node not found.\n"
if statement_list_node:
print(f" Reconstruyendo STL desde StatementList para red {network_id}...")
# Llama a la nueva función de reconstrucción STL
reconstructed_stl = reconstruct_stl_from_statementlist(statement_list_node[0])
# print(f" ... STL reconstruido (parcial):\n{reconstructed_stl[:200]}...") # Preview opcional
else:
print(f" Advertencia: No se encontró nodo <StatementList> para red STL {network_id}.")
# Guardar como un chunk de texto crudo
parsed_network_data = {
"id": network_id,
"title": network_title,
"comment": network_comment,
"language": "STL", # Indicar que es STL
"logic": [
{
"instruction_uid": f"STL_{network_id}", # UID inventado
"type": "RAW_STL_CHUNK", # Nuevo tipo para identificarlo
"stl": reconstructed_stl, # Guardar el texto reconstruido
}
],
}
elif programming_language in ["LAD", "FBD"]: elif programming_language in ["LAD", "FBD"]:
# Para LAD/FBD, llamar a parse_network (que espera FlgNet dentro de NetworkSource) # Para LAD/FBD, llamar a parse_network (que espera FlgNet dentro de NetworkSource)
# parse_network ya maneja su propio título/comentario si es necesario, pero podemos pasar los extraídos # parse_network ya maneja su propio título/comentario si es necesario, pero podemos pasar los extraídos
@ -1322,6 +1066,8 @@ def convert_xml_to_json(xml_filepath, json_filepath):
traceback.print_exc() traceback.print_exc()
print("--- Fin Traceback ---") print("--- Fin Traceback ---")
# --- Punto de Entrada Principal ---
if __name__ == "__main__": if __name__ == "__main__":
# Imports necesarios solo para la ejecución como script principal # Imports necesarios solo para la ejecución como script principal
import argparse import argparse

View File

@ -7,143 +7,167 @@ import traceback
import re import re
import importlib import importlib
import sys import sys
import sympy # Import sympy
# Import necessary components from processors directory
from processors.processor_utils import (
format_variable_name, # Keep if used outside processors
sympy_expr_to_scl, # Needed for IF grouping and maybe others
# get_target_scl_name might be used here? Unlikely.
)
from processors.symbol_manager import SymbolManager # Import the manager
# --- Constantes y Configuración --- # --- Constantes y Configuración ---
# SCL_SUFFIX = "_scl" # Old suffix SCL_SUFFIX = "_scl"
SCL_SUFFIX = "_sympy_processed" # New suffix to indicate processing method
GROUPED_COMMENT = "// Logic included in grouped IF" GROUPED_COMMENT = "// Logic included in grouped IF"
SIMPLIFIED_IF_COMMENT = "// Simplified IF condition by script" # May still be useful
# Global data dictionary (consider passing 'data' as argument if needed elsewhere) # Global data variable
# It's currently used by process_group_ifs implicitly via the outer scope,
# which works but passing it explicitly might be cleaner.
data = {} data = {}
def process_group_ifs(instruction, network_id, sympy_map, symbol_manager, data): def process_group_ifs(instruction, network_id, scl_map, access_map, data):
""" """
Busca condiciones (ya procesadas -> tienen expr SymPy en sympy_map) Busca instrucciones que generan condiciones (Contact, O, Eq, PBox, etc.) ya procesadas
y, si habilitan un grupo (>1) de bloques funcionales (con SCL ya generado), y, si habilitan un grupo (>1) de bloques funcionales (Move, Add, Call, etc.),
construye el bloque IF agrupado CON LA CONDICIÓN SIMPLIFICADA. construye el bloque IF agrupado.
Modifica el campo 'scl' de la instrucción generadora de condición. Modifica el campo 'scl' de la instrucción generadora de condición.
(Esta es la implementación de la función como la tenías en el archivo original)
""" """
instr_uid = instruction["instruction_uid"] instr_uid = instruction["instruction_uid"]
instr_type_original = instruction.get("type", "").replace(SCL_SUFFIX, "").replace("_error", "") instr_type = instruction["type"]
instr_type_original = instr_type.replace("_scl", "").replace("_error", "")
made_change = False made_change = False
# Check if this instruction *could* generate a condition suitable for grouping # Solo actuar sobre generadores de condición ya procesados (_scl)
# It must have been processed by the new SymPy method # y que no sean ellos mismos errores o ya agrupados por otro IF
if ( if (
not instruction.get("type", "").endswith(SCL_SUFFIX) # Check if processed by new method not instr_type.endswith("_scl")
or "_error" in instruction.get("type", "") or "_error" in instr_type
or instruction.get("grouped", False) or instruction.get("grouped", False)
or instr_type_original not in [ # Original types that produce boolean results or instr_type_original
"Contact", "O", "Eq", "Ne", "Gt", "Lt", "Ge", "Le", "PBox", "NBox", "And", "Xor", "Not" # Add others like comparison not in [
"Contact",
"O",
"Eq",
"Ne",
"Gt",
"Lt",
"Ge",
"Le",
"PBox",
"And",
"Xor",
] ]
): ): # Añadir más si es necesario
return False return False
# Avoid reagruping if SCL already contains a complex IF (less likely now) # Evitar reagrupar si ya se hizo (comprobando si SCL ya es un IF complejo)
current_scl = instruction.get("scl", "") current_scl = instruction.get("scl", "")
if current_scl.strip().startswith("IF") and "END_IF;" in current_scl and GROUPED_COMMENT not in current_scl: if current_scl.strip().startswith("IF") and "END_IF;" in current_scl:
# print(f"DEBUG Group: {instr_uid} ya tiene IF complejo, saltando agrupación.")
return False
# Ignorar comentarios simples que empiezan por IF
if current_scl.strip().startswith("//") and "IF" in current_scl:
return False return False
# *** Get the SymPy expression for the condition *** # Obtener la condición generada por esta instrucción (debería estar en scl_map['out'])
map_key_out = (network_id, instr_uid, "out") map_key_out = (network_id, instr_uid, "out")
sympy_condition_expr = sympy_map.get(map_key_out) condition_scl = scl_map.get(map_key_out)
# No SymPy expression found or trivial conditions # No agrupar para condiciones triviales, no encontradas o ya agrupadas
if sympy_condition_expr is None or sympy_condition_expr in [sympy.true, sympy.false]: if condition_scl is None or condition_scl in ["TRUE", "FALSE"]:
return False return False
# --- Find consumer instructions (logic similar to before) --- # Encontrar todos los bloques funcionales habilitados DIRECTAMENTE por esta condición
grouped_instructions_cores = [] grouped_instructions_cores = [] # Lista de SCL 'core' de los consumidores
consumer_instr_list = [] consumer_instr_list = [] # Lista de instrucciones consumidoras
network_logic = next((net["logic"] for net in data["networks"] if net["id"] == network_id), []) network_logic = next(
if not network_logic: return False (net["logic"] for net in data["networks"] if net["id"] == network_id), []
)
if not network_logic:
return False
groupable_types = [ # Types whose *final SCL* we want to group # Identificar los tipos de instrucciones que queremos agrupar (bloques funcionales)
"Move", "Add", "Sub", "Mul", "Div", "Mod", "Convert", groupable_types = [
"Call_FC", "Call_FB", # Assuming these generate final SCL in their processors now "Move",
# SCoil/RCoil might also be groupable if their SCL is final assignment "Add",
"SCoil", "RCoil" "Sub",
] "Mul",
"Div",
"Mod",
"Convert",
"Call_FC",
"Call_FB",
] # Añadir más si es necesario
for consumer_instr in network_logic: for consumer_instr in network_logic:
consumer_uid = consumer_instr["instruction_uid"] consumer_uid = consumer_instr["instruction_uid"]
# Saltar si ya está agrupado por otra condición o es él mismo
if consumer_instr.get("grouped", False) or consumer_uid == instr_uid: if consumer_instr.get("grouped", False) or consumer_uid == instr_uid:
continue continue
consumer_en = consumer_instr.get("inputs", {}).get("en") consumer_en = consumer_instr.get("inputs", {}).get("en")
consumer_type = consumer_instr.get("type", "") # Current type suffix matters consumer_type = consumer_instr.get("type", "") # Tipo actual (_scl o no)
consumer_type_original = consumer_type.replace(SCL_SUFFIX, "").replace("_error", "") consumer_type_original = consumer_type.replace("_scl", "").replace("_error", "")
# ¿Está la entrada 'en' del consumidor conectada a nuestra salida 'out'?
is_enabled_by_us = False is_enabled_by_us = False
if ( isinstance(consumer_en, dict) and consumer_en.get("type") == "connection" and if (
consumer_en.get("source_instruction_uid") == instr_uid and isinstance(consumer_en, dict)
consumer_en.get("source_pin") == "out"): and consumer_en.get("type") == "connection"
and consumer_en.get("source_instruction_uid") == instr_uid
and consumer_en.get("source_pin")
== "out" # Condición viene de 'out' del generador
):
is_enabled_by_us = True is_enabled_by_us = True
# Check if consumer is groupable AND has its final SCL generated # ¿Es un tipo de instrucción agrupable y ya procesado (tiene SCL)?
# The suffix check needs adjustment based on how terminating processors set it. if (
# Assuming processors like Move, Add, Call, SCoil, RCoil NOW generate final SCL and add a suffix. is_enabled_by_us
if ( is_enabled_by_us and consumer_type.endswith(SCL_SUFFIX) and # Or a specific "final_scl" suffix and consumer_type.endswith("_scl")
consumer_type_original in groupable_types ): and consumer_type_original in groupable_types
):
consumer_scl = consumer_instr.get("scl", "") consumer_scl = consumer_instr.get("scl", "")
# Extract core SCL (logic is similar, maybe simpler if SCL is cleaner now) # Extraer el SCL core (la parte DENTRO del IF o la línea única si no había IF)
core_scl = None core_scl = None
if consumer_scl:
# If consumer SCL itself is an IF generated by EN, take the body
if consumer_scl.strip().startswith("IF"): if consumer_scl.strip().startswith("IF"):
match = re.search(r"THEN\s*(.*?)\s*END_IF;", consumer_scl, re.DOTALL | re.IGNORECASE) # Extraer todo entre THEN y END_IF;
core_scl = match.group(1).strip() if match else None match = re.search(
elif not consumer_scl.strip().startswith("//"): # Otherwise, take the whole line if not comment r"IF\s+.*\s+THEN\s*(.*?)\s*END_IF;",
consumer_scl,
re.DOTALL | re.IGNORECASE,
)
if match:
core_scl = match.group(1).strip()
elif consumer_scl and not consumer_scl.strip().startswith("//"):
# Si no es IF y no es solo comentario, es el core
core_scl = consumer_scl.strip() core_scl = consumer_scl.strip()
if core_scl: if core_scl:
grouped_instructions_cores.append(core_scl) grouped_instructions_cores.append(core_scl)
consumer_instr_list.append(consumer_instr) consumer_instr_list.append(consumer_instr) # Guardar referencia
# else: # Debug
# print(f"DEBUG Group: Consumidor {consumer_uid} ({consumer_type}) habilitado por {instr_uid} no tenía SCL core extraíble. SCL: '{consumer_scl}'")
# --- If groupable consumers found --- # Si encontramos más de un consumidor agrupable
if len(grouped_instructions_cores) > 1: if len(grouped_instructions_cores) > 1:
print(f"INFO: Agrupando {len(grouped_instructions_cores)} instr. bajo condición de {instr_type_original} UID {instr_uid}") print(
f"INFO: Agrupando {len(grouped_instructions_cores)} instrucciones bajo condición de {instr_type_original} UID {instr_uid} (Cond: {condition_scl})"
)
# *** Simplify the SymPy condition *** # Construir el bloque IF agrupado
try: scl_grouped = [f"IF {condition_scl} THEN"]
#simplified_expr = sympy.simplify_logic(sympy_condition_expr, force=True)
simplified_expr = sympy.logic.boolalg.to_dnf(sympy_condition_expr, simplify=True)
except Exception as e:
print(f"Error simplifying condition for grouping UID {instr_uid}: {e}")
simplified_expr = sympy_condition_expr # Fallback
# *** Convert simplified condition to SCL string ***
condition_scl_simplified = sympy_expr_to_scl(simplified_expr, symbol_manager)
# *** Build the grouped IF SCL ***
scl_grouped_lines = [f"IF {condition_scl_simplified} THEN"]
for core_line in grouped_instructions_cores: for core_line in grouped_instructions_cores:
indented_core = "\n".join([f" {line.strip()}" for line in core_line.splitlines()]) # Añadir indentación adecuada (2 espacios)
scl_grouped_lines.append(indented_core) indented_core = "\n".join(
scl_grouped_lines.append("END_IF;") [f" {line.strip()}" for line in core_line.splitlines()]
final_grouped_scl = "\n".join(scl_grouped_lines) )
scl_grouped.append(indented_core)
scl_grouped.append("END_IF;")
final_grouped_scl = "\n".join(scl_grouped)
# Update the generator instruction's SCL # Sobrescribir 'scl' de la instrucción generadora de condición
instruction["scl"] = final_grouped_scl instruction["scl"] = final_grouped_scl
# Mark consumers as grouped # Marcar los consumidores como agrupados y limpiar su SCL original
for consumer_instr in consumer_instr_list: for consumer_instr in consumer_instr_list:
consumer_instr["scl"] = f"{GROUPED_COMMENT} (by UID {instr_uid})" consumer_instr["scl"] = f"{GROUPED_COMMENT} (by UID {instr_uid})"
consumer_instr["grouped"] = True consumer_instr["grouped"] = True # Marcar como agrupado
made_change = True made_change = True
# else: # Debug
# if len(grouped_instructions_cores) == 1:
# print(f"DEBUG Group: Solo 1 consumidor ({consumer_instr_list[0]['instruction_uid']}) para {instr_uid}. No se agrupa.")
# elif len(grouped_instructions_cores) == 0 and condition_scl not in ['TRUE', 'FALSE']:
# # Solo mostrar si la condición no era trivial
# pass # print(f"DEBUG Group: Ningún consumidor agrupable encontrado para {instr_uid} (Cond: {condition_scl}).")
return made_change return made_change
@ -217,47 +241,55 @@ def load_processors(processors_dir="processors"):
# Devolver el mapa (para lookup rápido si es necesario) y la lista ordenada # Devolver el mapa (para lookup rápido si es necesario) y la lista ordenada
return processor_map, processor_list_sorted return processor_map, processor_list_sorted
# --- Bucle Principal de Procesamiento (Modificado para STL) --- # --- Bucle Principal de Procesamiento (Modificado) ---
def process_json_to_scl(json_filepath): def process_json_to_scl(json_filepath):
""" """
Lee el JSON simplificado, aplica los procesadores dinámicamente cargados Lee el JSON simplificado, aplica los procesadores dinámicamente cargados
siguiendo un orden de prioridad (ignorando redes STL), y guarda el JSON procesado. siguiendo un orden de prioridad, y guarda el JSON procesado.
""" """
global data # Necesario para que load_processors y process_group_ifs (definidas fuera) puedan acceder a ella. global data # Necesario si process_group_ifs (definido fuera) accede a data globalmente.
# Considerar pasar 'data' como argumento si es posible refactorizar. # Si process_group_ifs está definida DENTRO de process_json_to_scl,
# no necesitarías global, ya que accedería a la 'data' local.
# Lo más limpio es definir process_group_ifs fuera y pasarle 'data'
# como argumento (como ya se hace). Así que 'global data' aquí es probablemente innecesario.
# Eliminémoslo por ahora y aseguremos que data se pasa a process_group_ifs.
if not os.path.exists(json_filepath): if not os.path.exists(json_filepath):
print(f"Error: JSON no encontrado: {json_filepath}") print(f"Error: JSON no encontrado: {json_filepath}")
return return
print(f"Cargando JSON desde: {json_filepath}") print(f"Cargando JSON desde: {json_filepath}")
try: try:
# Cargar datos en una variable local de esta función
with open(json_filepath, "r", encoding="utf-8") as f: with open(json_filepath, "r", encoding="utf-8") as f:
data = json.load(f) # Carga en 'data' global data = json.load(f)
except Exception as e: except Exception as e:
print(f"Error al cargar JSON: {e}") print(f"Error al cargar JSON: {e}")
traceback.print_exc() traceback.print_exc()
return return
# --- Carga dinámica de procesadores --- # --- Carga dinámica de procesadores (Obtiene mapa y lista ordenada) ---
script_dir = os.path.dirname(__file__) script_dir = os.path.dirname(__file__)
processors_dir_path = os.path.join(script_dir, 'processors') processors_dir_path = os.path.join(script_dir, 'processors')
processor_map, sorted_processors = load_processors(processors_dir_path) processor_map, sorted_processors = load_processors(processors_dir_path)
if not processor_map:
if not processor_map: # O verificar sorted_processors
print("Error crítico: No se cargaron procesadores. Abortando.") print("Error crítico: No se cargaron procesadores. Abortando.")
return return
# --- Crear mapas de acceso por red --- # --- Crear mapas de acceso por red ---
network_access_maps = {} network_access_maps = {}
# (La lógica para llenar network_access_maps no cambia, puedes copiarla de tu original)
for network in data.get("networks", []): for network in data.get("networks", []):
net_id = network["id"] net_id = network["id"]
current_access_map = {} current_access_map = {}
# Extraer todos los 'Access' usados en esta red
for instr in network.get("logic", []): for instr in network.get("logic", []):
# Revisar Inputs
for _, source in instr.get("inputs", {}).items(): for _, source in instr.get("inputs", {}).items():
sources_to_check = (source if isinstance(source, list) else ([source] if isinstance(source, dict) else [])) sources_to_check = (source if isinstance(source, list) else ([source] if isinstance(source, dict) else []))
for src in sources_to_check: for src in sources_to_check:
if (isinstance(src, dict) and src.get("uid") and src.get("type") in ["variable", "constant"]): if (isinstance(src, dict) and src.get("uid") and src.get("type") in ["variable", "constant"]):
current_access_map[src["uid"]] = src current_access_map[src["uid"]] = src
# Revisar Outputs
for _, dest_list in instr.get("outputs", {}).items(): for _, dest_list in instr.get("outputs", {}).items():
if isinstance(dest_list, list): if isinstance(dest_list, list):
for dest in dest_list: for dest in dest_list:
@ -265,38 +297,32 @@ def process_json_to_scl(json_filepath):
current_access_map[dest["uid"]] = dest current_access_map[dest["uid"]] = dest
network_access_maps[net_id] = current_access_map network_access_maps[net_id] = current_access_map
# --- Inicializar mapa SymPy y SymbolManager --- # --- Inicializar mapa SCL y bucle ---
symbol_manager = SymbolManager() scl_map = {} # Mapa para resultados SCL intermedios
sympy_map = {}
max_passes = 30 max_passes = 30
passes = 0 passes = 0
processing_complete = False processing_complete = False
print("\n--- Iniciando Bucle de Procesamiento Iterativo (con SymPy y prioridad) ---") print("\n--- Iniciando Bucle de Procesamiento Iterativo (con prioridad) ---")
while passes < max_passes and not processing_complete: while passes < max_passes and not processing_complete:
passes += 1 passes += 1
made_change_in_base_pass = False made_change_in_base_pass = False
made_change_in_group_pass = False made_change_in_group_pass = False
print(f"\n--- Pase {passes} ---") print(f"\n--- Pase {passes} ---")
num_sympy_processed_this_pass = 0 num_processed_this_pass = 0
num_grouped_this_pass = 0 num_grouped_this_pass = 0
# --- FASE 1: Procesadores Base (Ignorando STL) --- # --- FASE 1: Procesadores Base (Itera según la lista ordenada por prioridad) ---
print(f" Fase 1 (SymPy Base - Orden por Prioridad):") print(f" Fase 1 (Base - Orden por Prioridad):")
num_sympy_processed_this_pass = 0 for processor_info in sorted_processors: # Iterar sobre la lista ordenada por prioridad
for processor_info in sorted_processors:
current_type_name = processor_info['type_name'] current_type_name = processor_info['type_name']
func_to_call = processor_info['func'] func_to_call = processor_info['func']
# Descomentar para depuración muy detallada:
# print(f" Intentando procesar tipo: {current_type_name} (Prio: {processor_info['priority']})")
# Buscar instrucciones de este tipo en todas las redes
for network in data.get("networks", []): for network in data.get("networks", []):
network_id = network["id"] network_id = network["id"]
network_lang = network.get("language", "LAD") # Obtener lenguaje de la red
# *** IGNORAR REDES STL EN ESTA FASE ***
if network_lang == "STL":
continue # Saltar al siguiente network
access_map = network_access_maps.get(network_id, {}) access_map = network_access_maps.get(network_id, {})
network_logic = network.get("logic", []) network_logic = network.get("logic", [])
@ -304,127 +330,127 @@ def process_json_to_scl(json_filepath):
instr_uid = instruction.get("instruction_uid") instr_uid = instruction.get("instruction_uid")
instr_type_original = instruction.get("type", "Unknown") instr_type_original = instruction.get("type", "Unknown")
# Saltar si ya procesado, error, agrupado o es chunk STL/SCL/Unsupported # Saltar si ya está procesado, es un error o ya fue agrupado por otro
if (instr_type_original.endswith(SCL_SUFFIX) if (instr_type_original.endswith(SCL_SUFFIX)
or "_error" in instr_type_original or "_error" in instr_type_original
or instruction.get("grouped", False) or instruction.get("grouped", False)):
or instr_type_original in ["RAW_STL_CHUNK", "RAW_SCL_CHUNK", "UNSUPPORTED_LANG"]):
continue continue
# Determinar tipo efectivo (como antes) # Determinar el tipo efectivo de la instrucción para la comparación
# (Manejo especial para 'Call')
lookup_key = instr_type_original.lower() lookup_key = instr_type_original.lower()
effective_type_name = lookup_key effective_type_name = lookup_key
if instr_type_original == "Call": if instr_type_original == "Call":
block_type = instruction.get("block_type", "").upper() block_type = instruction.get("block_type", "").upper()
if block_type == "FC": effective_type_name = "call_fc" if block_type == "FC": effective_type_name = "call_fc"
elif block_type == "FB": effective_type_name = "call_fb" elif block_type == "FB": effective_type_name = "call_fb"
# Nota: Si es un tipo de bloque desconocido, effective_type_name será 'call'
# Llamar al procesador si coincide el tipo # Si el tipo efectivo de la instrucción coincide con el tipo que estamos procesando en este ciclo...
if effective_type_name == current_type_name: if effective_type_name == current_type_name:
try: try:
# Pasa sympy_map, symbol_manager y data # Llamar a la función del procesador, pasando 'data'
changed = func_to_call(instruction, network_id, sympy_map, symbol_manager, data) changed = func_to_call(instruction, network_id, scl_map, access_map, data) # Pasar data
if changed: if changed:
made_change_in_base_pass = True made_change_in_base_pass = True
num_sympy_processed_this_pass += 1 num_processed_this_pass += 1
# La función llamada debe añadir _scl o _error al tipo de la instrucción
# Descomentar para depuración:
# print(f" Procesado: {instr_type_original} UID {instr_uid}")
except Exception as e: except Exception as e:
print(f"ERROR(SymPy Base) al procesar {instr_type_original} UID {instr_uid}: {e}") print(f"ERROR(Base) al procesar {instr_type_original} UID {instr_uid} con {func_to_call.__name__}: {e}")
traceback.print_exc() traceback.print_exc()
instruction["scl"] = f"// ERROR en SymPy procesador base: {e}" # Marcar como error para no reintentar
instruction["scl"] = f"// ERROR en procesador base: {e}"
instruction["type"] = instr_type_original + "_error" instruction["type"] = instr_type_original + "_error"
made_change_in_base_pass = True # Marcar cambio aunque sea error made_change_in_base_pass = True # Considerar error como cambio
print(f" -> {num_sympy_processed_this_pass} instrucciones (no STL) procesadas con SymPy.")
# --- FASE 2: Procesador de Agrupación (Se ejecuta después de toda la Fase 1) ---
# --- FASE 2: Agrupación IF (Ignorando STL) --- # Ejecutar solo si hubo cambios en la fase base (o en el primer pase)
if made_change_in_base_pass or passes == 1: if made_change_in_base_pass or passes == 1:
print(f" Fase 2 (Agrupación IF con Simplificación):") print(f" Fase 2 (Agrupación IF):")
num_grouped_this_pass = 0
for network in data.get("networks", []): for network in data.get("networks", []):
network_id = network["id"] network_id = network["id"]
network_lang = network.get("language", "LAD") # Obtener lenguaje access_map = network_access_maps.get(network_id, {})
# *** IGNORAR REDES STL EN ESTA FASE ***
if network_lang == "STL":
continue # Saltar red STL
network_logic = network.get("logic", []) network_logic = network.get("logic", [])
# Iterar sobre instrucciones ya procesadas que podrían generar condiciones
for instruction in network_logic: for instruction in network_logic:
# Intentar agrupar solo si está procesado (_scl) y no previamente agrupado
if instruction["type"].endswith("_scl") and not instruction.get("grouped", False):
try: try:
# Llama a process_group_ifs (que necesita acceso a 'data' global o pasado) # Llamar a la función de agrupación, pasando 'data'
group_changed = process_group_ifs(instruction, network_id, sympy_map, symbol_manager, data) group_changed = process_group_ifs(instruction, network_id, scl_map, access_map, data)
if group_changed: if group_changed:
made_change_in_group_pass = True made_change_in_group_pass = True
num_grouped_this_pass += 1 num_grouped_this_pass += 1
except Exception as e: except Exception as e:
print(f"ERROR(GroupLoop) al intentar agrupar desde UID {instruction.get('instruction_uid')}: {e}") print(f"ERROR(Group) al intentar agrupar desde UID {instruction.get('instruction_uid')}: {e}")
traceback.print_exc() traceback.print_exc()
print(f" -> {num_grouped_this_pass} agrupaciones realizadas (en redes no STL).") # No marcamos la instrucción origen como error, solo falló la agrupación
# --- Comprobar si se completó el procesamiento --- # --- Comprobar si se completó el procesamiento ---
if not made_change_in_base_pass and not made_change_in_group_pass: if not made_change_in_base_pass and not made_change_in_group_pass:
print(f"\n--- No se hicieron más cambios en el pase {passes}. Proceso iterativo completado. ---") print(f"\n--- No se hicieron más cambios en el pase {passes}. Proceso iterativo completado. ---")
processing_complete = True processing_complete = True
else: else:
print(f"--- Fin Pase {passes}: {num_sympy_processed_this_pass} proc SymPy, {num_grouped_this_pass} agrup. Continuando...") print(f"--- Fin Pase {passes}: {num_processed_this_pass} procesados, {num_grouped_this_pass} agrupados. Continuando...")
# --- Comprobar límite de pases --- # --- Comprobar límite de pases ---
if passes == max_passes and not processing_complete: if passes == max_passes and not processing_complete:
print(f"\n--- ADVERTENCIA: Límite de {max_passes} pases alcanzado...") print(f"\n--- ADVERTENCIA: Límite de {max_passes} pases alcanzado. Puede haber dependencias no resueltas. ---")
# --- FIN BUCLE ITERATIVO --- # --- FIN BUCLE ITERATIVO ---
# --- Verificación Final (Ajustada para RAW_STL_CHUNK) --- # --- Verificación Final de Instrucciones No Procesadas ---
print("\n--- Verificación Final de Instrucciones No Procesadas ---") print("\n--- Verificación Final de Instrucciones No Procesadas ---")
unprocessed_count = 0 unprocessed_count = 0
unprocessed_details = [] unprocessed_details = []
# Añadir RAW_STL_CHUNK a los tipos ignorados ignored_types = ['raw_scl_chunk', 'unsupported_lang'] # Tipos que esperamos no procesar
ignored_types = ['raw_scl_chunk', 'unsupported_lang', 'raw_stl_chunk'] # Añadido raw_stl_chunk
for network in data.get("networks", []): for network in data.get("networks", []):
network_id = network.get("id", "Unknown ID") network_id = network.get("id", "Unknown ID")
network_title = network.get("title", f"Network {network_id}") network_title = network.get("title", f"Network {network_id}")
network_lang = network.get("language", "LAD") # Obtener lenguaje
# No verificar instrucciones dentro de redes STL, ya que no se procesan
if network_lang == "STL":
continue
for instruction in network.get("logic", []): for instruction in network.get("logic", []):
instr_uid = instruction.get("instruction_uid", "Unknown UID") instr_uid = instruction.get("instruction_uid", "Unknown UID")
instr_type = instruction.get("type", "Unknown Type") instr_type = instruction.get("type", "Unknown Type")
is_grouped = instruction.get("grouped", False) is_grouped = instruction.get("grouped", False)
# Condición revisada para ignorar los chunks crudos # Comprobar si NO está procesada, NO es error, NO está agrupada Y NO es un tipo ignorado
if (not instr_type.endswith(SCL_SUFFIX) and if (not instr_type.endswith(SCL_SUFFIX) and
"_error" not in instr_type and "_error" not in instr_type and
not is_grouped and not is_grouped and
instr_type.lower() not in ignored_types): # Verifica contra lista actualizada instr_type.lower() not in ignored_types):
unprocessed_count += 1 unprocessed_count += 1
unprocessed_details.append( unprocessed_details.append(
f" - Red '{network_title}' (ID: {network_id}, Lang: {network_lang}), " f" - Red '{network_title}' (ID: {network_id}), "
f"Instrucción UID: {instr_uid}, Tipo: '{instr_type}'" f"Instrucción UID: {instr_uid}, Tipo Original: '{instr_type}'"
) )
if unprocessed_count > 0: if unprocessed_count > 0:
print(f"ADVERTENCIA: Se encontraron {unprocessed_count} instrucciones (no STL) que parecen no haber sido procesadas:") print(f"ADVERTENCIA: Se encontraron {unprocessed_count} instrucciones que no fueron procesadas (y no son tipos ignorados):")
for detail in unprocessed_details: print(detail) if unprocessed_details:
for detail in unprocessed_details:
print(detail)
print(">>> Estos tipos podrían necesitar un procesador en el directorio 'processors' o tener dependencias irresolubles.")
# else: # No debería pasar si unprocessed_count > 0 y la lógica es correcta
# print("...")
else: else:
print("INFO: Todas las instrucciones relevantes (no STL) parecen haber sido procesadas o agrupadas.") print("INFO: Todas las instrucciones relevantes fueron procesadas a SCL, marcadas como error o agrupadas exitosamente.")
# --- Guardar JSON Final --- # --- Guardar JSON Final ---
output_filename = json_filepath.replace("_simplified.json", "_simplified_processed.json") output_filename = json_filepath.replace("_simplified.json", "_simplified_processed.json")
print(f"\nGuardando JSON procesado en: {output_filename}") print(f"\nGuardando JSON procesado en: {output_filename}")
try: try:
with open(output_filename, "w", encoding="utf-8") as f: with open(output_filename, "w", encoding="utf-8") as f:
# Usamos la 'data' local que hemos estado modificando
json.dump(data, f, indent=4, ensure_ascii=False) json.dump(data, f, indent=4, ensure_ascii=False)
print("Guardado completado.") print("Guardado completado.")
except Exception as e: except Exception as e:
print(f"Error Crítico al guardar JSON procesado: {e}") print(f"Error Crítico al guardar JSON procesado: {e}")
traceback.print_exc() traceback.print_exc()
# --- Ejecución (sin cambios) ---
# --- Ejecución (igual que antes) ---
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process simplified JSON to embed SCL logic.") parser = argparse.ArgumentParser(description="Process simplified JSON to embed SCL logic.")
parser.add_argument( parser.add_argument(
@ -435,48 +461,6 @@ if __name__ == "__main__":
) )
args = parser.parse_args() args = parser.parse_args()
xml_filename_base = os.path.splitext(os.path.basename(args.source_xml_filepath))[0]
xml_dir = os.path.dirname(args.source_xml_filepath)
input_dir = xml_dir if xml_dir else os.path.dirname(__file__)
input_json_file = os.path.join(input_dir, f"{xml_filename_base}_simplified.json")
if not os.path.exists(input_json_file):
print(f"Error Fatal: El archivo de entrada JSON simplificado no existe: '{input_json_file}'")
print(f"Asegúrate de haber ejecutado 'x1_to_json.py' primero sobre '{args.source_xml_filepath}'.")
sys.exit(1)
else:
process_json_to_scl(input_json_file)
parser = argparse.ArgumentParser(description="Process simplified JSON to embed SCL logic.")
parser.add_argument(
"source_xml_filepath",
nargs="?",
default="TestLAD.xml",
help="Path to the original source XML file (used to derive JSON input name, default: TestLAD.xml)"
)
args = parser.parse_args()
xml_filename_base = os.path.splitext(os.path.basename(args.source_xml_filepath))[0]
xml_dir = os.path.dirname(args.source_xml_filepath)
input_dir = xml_dir if xml_dir else os.path.dirname(__file__)
input_json_file = os.path.join(input_dir, f"{xml_filename_base}_simplified.json")
if not os.path.exists(input_json_file):
print(f"Error Fatal: El archivo de entrada JSON simplificado no existe: '{input_json_file}'")
print(f"Asegúrate de haber ejecutado 'x1_to_json.py' primero sobre '{args.source_xml_filepath}'.")
sys.exit(1)
else:
process_json_to_scl(input_json_file)
parser = argparse.ArgumentParser(description="Process simplified JSON to embed SCL logic.")
parser.add_argument(
"source_xml_filepath",
nargs="?",
default="TestLAD.xml",
help="Path to the original source XML file (used to derive JSON input name, default: TestLAD.xml)"
)
args = parser.parse_args()
xml_filename_base = os.path.splitext(os.path.basename(args.source_xml_filepath))[0] xml_filename_base = os.path.splitext(os.path.basename(args.source_xml_filepath))[0]
# Usar directorio del script actual si el XML no tiene ruta, o la ruta del XML si la tiene # Usar directorio del script actual si el XML no tiene ruta, o la ruta del XML si la tiene
xml_dir = os.path.dirname(args.source_xml_filepath) xml_dir = os.path.dirname(args.source_xml_filepath)

View File

@ -1,39 +1,28 @@
# x3_generate_scl.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import json import json
import os import os
import re import re
import argparse import argparse
import sys
import traceback # Importar traceback para errores
# --- Importar Utilidades y Constantes (Asumiendo ubicación) --- # --- Helper Functions ---
try:
# Intenta importar desde el paquete de procesadores si está estructurado así
from processors.processor_utils import format_variable_name
# Definir SCL_SUFFIX aquí o importarlo si está centralizado
SCL_SUFFIX = "_sympy_processed" # Asegúrate que coincida con x2_process.py
GROUPED_COMMENT = "// Logic included in grouped IF" # Opcional, si se usa para filtrar
except ImportError:
print("Advertencia: No se pudo importar 'format_variable_name' desde processors.processor_utils.")
print("Usando una implementación local básica (¡PUEDE FALLAR CON NOMBRES COMPLEJOS!).")
# Implementación local BÁSICA como fallback (MENOS RECOMENDADA)
def format_variable_name(name):
if not name: return "_INVALID_NAME_"
if name.startswith('"') and name.endswith('"'): return name # Mantener comillas
prefix = "#" if name.startswith("#") else ""
if prefix: name = name[1:]
if name and name[0].isdigit(): name = "_" + name
name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
return prefix + name
SCL_SUFFIX = "_sympy_processed"
GROUPED_COMMENT = "// Logic included in grouped IF"
def format_variable_name(name):
# --- Función Principal de Generación SCL --- """Limpia el nombre de la variable quitando comillas y espacios."""
if not name:
return "_INVALID_NAME_"
# Quita comillas dobles iniciales/finales
name = name.strip('"')
# Reemplaza comillas dobles internas y puntos por guión bajo
name = name.replace('"."', '_').replace('.', '_')
# Quita comillas restantes (si las hubiera)
name = name.replace('"', '')
# Asegurarse de que no empiece con número (aunque raro con comillas iniciales)
if name and name[0].isdigit():
name = "_" + name
return name
def generate_scl(processed_json_filepath, output_scl_filepath): def generate_scl(processed_json_filepath, output_scl_filepath):
"""Genera un archivo SCL a partir del JSON procesado por x2_process (versión SymPy).""" """Genera un archivo SCL a partir del JSON procesado."""
if not os.path.exists(processed_json_filepath): if not os.path.exists(processed_json_filepath):
print(f"Error: Archivo JSON procesado no encontrado en '{processed_json_filepath}'") print(f"Error: Archivo JSON procesado no encontrado en '{processed_json_filepath}'")
@ -45,153 +34,117 @@ def generate_scl(processed_json_filepath, output_scl_filepath):
data = json.load(f) data = json.load(f)
except Exception as e: except Exception as e:
print(f"Error al cargar o parsear JSON: {e}") print(f"Error al cargar o parsear JSON: {e}")
traceback.print_exc()
return return
# --- Extracción de Información del Bloque --- # --- Extracción de Información del Bloque ---
block_name = data.get('block_name', 'UnknownBlock') block_name = data.get('block_name', 'UnknownBlock')
block_number = data.get('block_number') block_number = data.get('block_number')
block_lang_original = data.get('language', 'LAD') # Lenguaje original block_lang = data.get('language', 'LAD') # Lenguaje original
# Determinar tipo de bloque SCL (Asumir FB si no se especifica)
# Idealmente, x1_to_json.py guardaría esto en data['block_type_scl'] = 'FC' o 'FB'
block_type_scl = data.get('block_type_scl', 'FUNCTION_BLOCK')
block_comment = data.get('block_comment', '') block_comment = data.get('block_comment', '')
# Usar format_variable_name para el nombre del bloque en SCL # Limpiar nombre del bloque para usarlo en SCL
scl_block_name = format_variable_name(block_name) scl_block_name = format_variable_name(block_name)
print(f"Generando SCL para {block_type_scl}: {scl_block_name} (Original: {block_name})") print(f"Generando SCL para el bloque: {scl_block_name} (Original: {block_name})")
# --- Identificación de Variables Temporales y Estáticas --- # --- Identificación de Variables Temporales y Estáticas ---
# La detección basada en regex sobre el SCL final debería seguir funcionando
temp_vars = set() temp_vars = set()
stat_vars = set() stat_vars = set() # Para flancos, si se implementan completamente
# Regex mejorado para capturar variables temporales que empiezan con # o _temp_ # Usar regex para encontrar variables _temp_... y stat_...
# y estáticas (si usas un prefijo como 'stat_' o para bits de memoria de flanco) temp_pattern = re.compile(r'"?(_temp_[a-zA-Z0-9_]+)"?')
temp_pattern = re.compile(r'"?#(_temp_[a-zA-Z0-9_]+)"?|"?(_temp_[a-zA-Z0-9_]+)"?') # Captura con o sin # stat_pattern = re.compile(r'"?(stat_[a-zA-Z0-9_]+)"?')
stat_pattern = re.compile(r'"?(stat_[a-zA-Z0-9_]+)"?') # Para memorias de flanco si usan prefijo 'stat_'
edge_memory_bits = set() # Para detectar bits de memoria de flanco por nombre
for network in data.get('networks', []): for network in data.get('networks', []):
for instruction in network.get('logic', []): for instruction in network.get('logic', []):
scl_code = instruction.get('scl', '') scl_code = instruction.get('scl', '')
# Buscar también en _edge_mem_update_scl si existe if scl_code:
edge_update_code = instruction.get('_edge_mem_update_scl','') # Buscar temporales en el código SCL generado
code_to_scan = (scl_code if scl_code else '') + '\n' + (edge_update_code if edge_update_code else '') found_temps = temp_pattern.findall(scl_code)
for temp_name in found_temps:
temp_vars.add(temp_name) # Añadir al set (evita duplicados)
# Buscar estáticas (para flancos)
found_stats = stat_pattern.findall(scl_code)
for stat_name in found_stats:
stat_vars.add(stat_name)
if code_to_scan: print(f"Variables temporales detectadas: {len(temp_vars)}")
# Buscar #_temp_... o _temp_... # print(f"Variables estáticas detectadas (para flancos): {len(stat_vars)}")
found_temps = temp_pattern.findall(code_to_scan)
for temp_tuple in found_temps:
# findall devuelve tuplas por los grupos de captura, tomar el no vacío
temp_name = next((t for t in temp_tuple if t), None)
if temp_name:
temp_vars.add("#"+temp_name if not temp_name.startswith("#") else temp_name) # Asegurar que empiece con #
# Buscar estáticas (ej: stat_...)
found_stats = stat_pattern.findall(code_to_scan)
stat_vars.update(found_stats)
# Identificar explícitamente bits de memoria usados por PBox/NBox
# Asumiendo que el nombre se guarda en el JSON (requiere ajuste en x1/x2)
# if instruction.get("type","").startswith(("PBox", "NBox")):
# mem_bit_info = instruction.get("inputs", {}).get("bit")
# if mem_bit_info and mem_bit_info.get("type") == "variable":
# edge_memory_bits.add(format_variable_name(mem_bit_info.get("name")))
print(f"Variables temporales (#_temp_...) detectadas: {len(temp_vars)}")
# Si se detectan memorias de flanco, añadirlas a stat_vars si no tienen prefijo 'stat_'
# stat_vars.update(edge_memory_bits - stat_vars) # Añadir solo las nuevas
print(f"Variables estáticas (stat_...) detectadas: {len(stat_vars)}")
# --- Construcción del String SCL --- # --- Construcción del String SCL ---
scl_output = [] scl_output = []
# Cabecera del Bloque # Cabecera del Bloque
scl_output.append(f"// Block Name (Original): {block_name}") scl_output.append(f"// Block Name (Original): {block_name}")
if block_number: scl_output.append(f"// Block Number: {block_number}") if block_number:
scl_output.append(f"// Original Language: {block_lang_original}") scl_output.append(f"// Block Number: {block_number}")
if block_comment: scl_output.append(f"// Block Comment: {block_comment}") scl_output.append(f"// Original Language: {block_lang}")
if block_comment:
scl_output.append(f"// Block Comment: {block_comment}")
scl_output.append("") scl_output.append("")
scl_output.append(f"{block_type_scl} \"{scl_block_name}\"") scl_output.append(f"FUNCTION_BLOCK \"{scl_block_name}\"") # Asumir FB por variables Temp/Stat
scl_output.append("{ S7_Optimized_Access := 'TRUE' }") scl_output.append("{ S7_Optimized_Access := 'TRUE' }") # Opcional, común
scl_output.append("VERSION : 0.1") scl_output.append("VERSION : 0.1") # Opcional
scl_output.append("") scl_output.append("")
# Declaraciones de Interfaz (Implementación básica) # Declaraciones de Interfaz
interface_sections = ["Input", "Output", "InOut", "Static", "Temp", "Constant", "Return"] scl_output.append("VAR_INPUT")
interface_data = data.get('interface', {}) # Iterar sobre data['interface']['Input'] si existe
# for var in data.get('interface', {}).get('Input', []):
for section_name in interface_sections: # scl_output.append(f" {format_variable_name(var['name'])} : {var['datatype']};")
scl_section_name = section_name
# Ajustar nombres de sección para SCL (Static -> STAT, Temp -> TEMP)
if section_name == "Static": scl_section_name = "STAT"
if section_name == "Temp": scl_section_name = "TEMP" # Usar VAR_TEMP para variables #temp
vars_in_section = interface_data.get(section_name, [])
# No declarar VAR_TEMP aquí, se hará después con las detectadas/originales
if section_name == "Temp": continue
# No declarar VAR_STAT aquí si ya lo hacemos abajo con las detectadas
if section_name == "Static" and stat_vars: continue
if vars_in_section or (section_name == "Static" and stat_vars): # Incluir STAT si hay detectadas
# Usar VAR para Input/Output/InOut/Constant/Return
var_keyword = "VAR" if section_name != "Static" else "VAR_STAT"
scl_output.append(f"{var_keyword}_{section_name.upper()}")
for var in vars_in_section:
var_name = var.get('name')
var_dtype = var.get('datatype', 'VARIANT') # Default a VARIANT
if var_name:
# Usar format_variable_name CORRECTO
scl_name = format_variable_name(var_name)
scl_output.append(f" {scl_name} : {var_dtype};")
# Declarar stat_vars detectadas si esta es la sección STAT
if section_name == "Static" and stat_vars:
for var_name in sorted(list(stat_vars)):
# Asumir Bool para stat_, podría necesitar inferencia
scl_output.append(f" {format_variable_name(var_name)} : Bool; // Auto-detected STAT")
scl_output.append("END_VAR") scl_output.append("END_VAR")
scl_output.append("") scl_output.append("")
# Declaraciones Estáticas (Si no estaban en la interfaz y se detectaron) scl_output.append("VAR_OUTPUT")
# Esto es redundante si la sección VAR_STAT ya se generó arriba # Iterar sobre data['interface']['Output'] si existe
# if stat_vars and not interface_data.get("Static"): # for var in data.get('interface', {}).get('Output', []):
# scl_output.append("VAR_STAT") # scl_output.append(f" {format_variable_name(var['name'])} : {var['datatype']};")
# for var_name in sorted(list(stat_vars)): scl_output.append("END_VAR")
# scl_output.append(f" {format_variable_name(var_name)} : Bool; // Auto-detected STAT") scl_output.append("")
# scl_output.append("END_VAR")
# scl_output.append("")
scl_output.append("VAR_IN_OUT")
# Iterar sobre data['interface']['InOut'] si existe
# for var in data.get('interface', {}).get('InOut', []):
# scl_output.append(f" {format_variable_name(var['name'])} : {var['datatype']};")
scl_output.append("END_VAR")
scl_output.append("")
# Declaraciones Temporales (Interfaz Temp + _temp_ detectadas) # Declaraciones Estáticas (para flancos)
if stat_vars:
scl_output.append("VAR_STAT")
# Asumir Bool para flancos, se podría inferir mejor si PBox lo indicara
for var_name in sorted(list(stat_vars)):
scl_output.append(f" \"{var_name}\" : Bool; // Memory for edge detection")
scl_output.append("END_VAR")
scl_output.append("")
# Declaraciones Temporales
# Incluir las variables de la sección Temp del JSON original
# y las generadas automáticamente (_temp_...)
scl_output.append("VAR_TEMP") scl_output.append("VAR_TEMP")
declared_temps = set() declared_temps = set()
interface_temps = interface_data.get('Temp', []) interface_temps = data.get('interface', {}).get('Temp', [])
if interface_temps: if interface_temps:
for var in interface_temps: for var in interface_temps:
var_name = var.get('name') formatted_name = format_variable_name(var['name'])
var_dtype = var.get('datatype', 'VARIANT') # Añadir comillas si el nombre original las tenía o si contiene caracteres especiales
if var_name: scl_name = f'"{formatted_name}"' if '"' in var['name'] or '.' in var['name'] else formatted_name
scl_name = format_variable_name(var_name) scl_output.append(f" {scl_name} : {var['datatype']};")
scl_output.append(f" {scl_name} : {var_dtype};")
declared_temps.add(scl_name) # Marcar como declarada declared_temps.add(scl_name) # Marcar como declarada
# Declarar las _temp_ generadas si no estaban ya en la interfaz Temp # Declarar las _temp_ generadas si no estaban ya en la interfaz Temp
if temp_vars: if temp_vars:
# Intentar inferir tipo (difícil sin más info), por ahora usar Variant o Bool/DInt
for var_name in sorted(list(temp_vars)): for var_name in sorted(list(temp_vars)):
scl_name = format_variable_name(var_name) # #_temp_... scl_name = f'"{var_name}"' # Asegurar comillas para _temp_
if scl_name not in declared_temps: if scl_name not in declared_temps:
# Inferencia básica de tipo # Inferencia básica de tipo por nombre de pin (muy heurístico)
inferred_type = "Bool" # Asumir Bool para la mayoría de temps de lógica inferred_type = "Variant" # Tipo seguro por defecto
if var_name.endswith("_out"): # Salida de bloque lógico/comparación?
inferred_type = "Bool"
elif var_name.endswith("_out_num"): # Salida de bloque numérico?
inferred_type = "DInt" # O Real? O Int? Difícil saber
# Se podría mejorar si los procesadores añadieran info de tipo # Se podría mejorar si los procesadores añadieran info de tipo
scl_output.append(f" {scl_name} : {inferred_type}; // Auto-generated temporary") scl_output.append(f" {scl_name} : {inferred_type}; // Auto-generated temporary")
declared_temps.add(scl_name) declared_temps.add(scl_name) # Marcar como declarada
scl_output.append("END_VAR") scl_output.append("END_VAR")
scl_output.append("") scl_output.append("")
@ -203,85 +156,75 @@ def generate_scl(processed_json_filepath, output_scl_filepath):
for i, network in enumerate(data.get('networks', [])): for i, network in enumerate(data.get('networks', [])):
network_title = network.get('title', f'Network {network.get("id")}') network_title = network.get('title', f'Network {network.get("id")}')
network_comment = network.get('comment', '') network_comment = network.get('comment', '')
network_lang = network.get('language', 'LAD') # O el lenguaje original # Obtener lenguaje original de la red, default a LAD si no está
network_lang = network.get('language', 'LAD')
scl_output.append(f" // Network {i+1}: {network_title} (Original Language: {network_lang})") scl_output.append(f" // Network {i+1}: {network_title} (Original Language: {network_lang})")
if network_comment: if network_comment:
for line in network_comment.splitlines(): for line in network_comment.splitlines():
scl_output.append(f" // {line}") scl_output.append(f" // {line}")
scl_output.append("") scl_output.append("") # Línea en blanco antes del código de la red
network_has_code = False network_has_code = False
# --- NUEVO MANEJO STL con formato Markdown ---
if network_lang == "STL":
network_has_code = True # Marcar que la red tiene contenido
if network.get('logic') and isinstance(network['logic'], list) and len(network['logic']) > 0:
stl_chunk = network['logic'][0]
if stl_chunk.get("type") == "RAW_STL_CHUNK" and "stl" in stl_chunk:
raw_stl_code = stl_chunk["stl"]
# Añadir marcador de inicio (como comentario SCL para evitar errores)
scl_output.append(f" {'//'} ```STL") # Doble '//' para asegurar que sea comentario
# Escribir el código STL crudo, indentado
for stl_line in raw_stl_code.splitlines():
# Añadir indentación estándar de SCL
scl_output.append(f" {stl_line}") # <-- STL sin comentar
# Añadir marcador de fin (como comentario SCL)
scl_output.append(f" {'//'} ```")
else:
scl_output.append(" // ERROR: Contenido STL inesperado en JSON.")
else:
scl_output.append(" // ERROR: No se encontró lógica STL en JSON para esta red.")
scl_output.append("") # Línea en blanco después de la red STL
# --- FIN NUEVO MANEJO STL con formato Markdown ---
else:
# Iterar sobre la 'logica' de la red # Iterar sobre la 'logica' de la red
for instruction in network.get('logic', []): for instruction in network.get('logic', []):
instruction_type = instruction.get("type", "") instruction_type = instruction.get("type", "")
scl_code = instruction.get('scl', "") # Obtener SCL generado por x2 scl_code = instruction.get('scl')
# Saltar instrucciones agrupadas # --- INICIO: Manejar RAW_SCL_CHUNK y otros tipos ---
if instruction.get("grouped", False): if instruction_type == "RAW_SCL_CHUNK" and scl_code:
network_has_code = True
# Imprimir el SCL reconstruido directamente
for line in scl_code.splitlines():
scl_output.append(f" {line}") # Añadir indentación
elif instruction_type == "UNSUPPORTED_LANG" and scl_code:
network_has_code = True
# Imprimir comentario para lenguajes no soportados
for line in scl_code.splitlines():
scl_output.append(f" {line}")
elif instruction_type.endswith("_scl") and scl_code:
# Código SCL generado por x2_process.py para LAD/FBD
if instruction.get("grouped", False): # Ignorar si fue agrupado
continue continue
# Escribir SCL si es un tipo procesado y tiene código relevante # Lógica mejorada para omitir comentarios internos si no aportan
# (Ignorar comentarios de depuración de SymPy) lines = scl_code.splitlines()
if instruction_type.endswith(SCL_SUFFIX) and scl_code: is_internal_comment_only = (len(lines) == 1 and
is_internal_sympy_comment_only = scl_code.strip().startswith("// SymPy") or \ (lines[0].strip().startswith("// RLO") or
scl_code.strip().startswith("// PBox SymPy processed") or \ lines[0].strip().startswith("// Comparison") or
scl_code.strip().startswith("// NBox SymPy processed") lines[0].strip().startswith("// Logic O") or
# O podría ser más genérico: ignorar cualquier línea que solo sea comentario SCL lines[0].strip().startswith("// Logic included in grouped IF") or # Usar GROUPED_COMMENT si lo importas
is_only_comment = all(line.strip().startswith("//") for line in scl_code.splitlines()) lines[0].strip().startswith("// P_TRIG") or
lines[0].strip().startswith("// N_TRIG") ))
if not is_internal_comment_only:
# Escribir solo si NO es un comentario interno de SymPy O si es un bloque IF (que sí debe escribirse)
if not is_only_comment or scl_code.strip().startswith("IF"):
network_has_code = True network_has_code = True
for line in scl_code.splitlines(): for line in lines:
# Añadir indentación estándar clean_line = line.strip()
scl_output.append(f" {line}") # Omitir comentarios autogenerados específicos
if not (clean_line.startswith("// RLO:") or \
# Incluir también tipos especiales directamente clean_line.startswith("// Comparison") or \
elif instruction_type in ["RAW_SCL_CHUNK", "UNSUPPORTED_LANG"] and scl_code: clean_line.startswith("// Logic O") or \
network_has_code = True clean_line == "// Logic included in grouped IF" or \
for line in scl_code.splitlines(): clean_line.startswith("// P_TRIG(") or \
scl_output.append(f" {line}") # Indentar clean_line.startswith("// N_TRIG(")):
scl_output.append(f" {line}") # Indentación
# Podríamos añadir comentarios para errores si se desea # Ignorar instrucciones no procesadas (sin _scl) o con error
# elif "_error" in instruction_type: # elif "_error" in instruction_type:
# scl_output.append(f" // Error processing instruction {instruction.get('instruction_uid')}: {scl_code}")
# network_has_code = True # network_has_code = True
# scl_output.append(f" // ERROR processing instruction UID {instruction.get('instruction_uid')}: {instruction.get('scl', 'No details')}")
# --- FIN: Manejar RAW_SCL_CHUNK y otros tipos ---
if network_has_code: if network_has_code:
scl_output.append("") # Línea en blanco después del código de la red scl_output.append("") # Añadir línea en blanco después del código de la red si hubo algo
else: else:
# Añadir comentario si la red estaba vacía o no generó código imprimible
scl_output.append(f" // Network did not produce printable SCL code.") scl_output.append(f" // Network did not produce printable SCL code.")
scl_output.append("") scl_output.append("")
# Fin del bloque scl_output.append("END_FUNCTION_BLOCK")
scl_output.append("END_FUNCTION_BLOCK") # O END_FUNCTION si es FC
# --- Escritura del Archivo SCL --- # --- Escritura del Archivo SCL ---
print(f"Escribiendo archivo SCL en: {output_scl_filepath}") print(f"Escribiendo archivo SCL en: {output_scl_filepath}")
@ -292,12 +235,16 @@ def generate_scl(processed_json_filepath, output_scl_filepath):
print("Generación de SCL completada.") print("Generación de SCL completada.")
except Exception as e: except Exception as e:
print(f"Error al escribir el archivo SCL: {e}") print(f"Error al escribir el archivo SCL: {e}")
traceback.print_exc()
# --- Ejecución --- # --- Ejecución ---
if __name__ == "__main__": if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate final SCL file from processed JSON (SymPy version).") # Imports necesarios solo para la ejecución como script principal
import argparse
import os
import sys
parser = argparse.ArgumentParser(description="Generate final SCL file from processed JSON.")
# Acepta el nombre del XML original como referencia para derivar nombres
parser.add_argument( parser.add_argument(
"source_xml_filepath", "source_xml_filepath",
nargs="?", nargs="?",
@ -306,17 +253,20 @@ if __name__ == "__main__":
) )
args = parser.parse_args() args = parser.parse_args()
# Derivar nombres de archivos de entrada y salida
xml_filename_base = os.path.splitext(os.path.basename(args.source_xml_filepath))[0] xml_filename_base = os.path.splitext(os.path.basename(args.source_xml_filepath))[0]
# Usar directorio del script si no hay ruta, o la ruta del XML si la tiene input_dir = os.path.dirname(args.source_xml_filepath) # Directorio del XML original
xml_dir = os.path.dirname(args.source_xml_filepath)
base_dir = xml_dir if xml_dir else os.path.dirname(__file__)
input_json_file = os.path.join(base_dir, f"{xml_filename_base}_simplified_processed.json") # Nombre del JSON procesado (entrada para este script)
output_scl_file = os.path.join(base_dir, f"{xml_filename_base}_simplified_processed.scl") input_json_file = os.path.join(input_dir, f"{xml_filename_base}_simplified_processed.json")
# Nombre del SCL final (salida de este script)
output_scl_file = os.path.join(input_dir, f"{xml_filename_base}_simplified_processed.scl")
# Verificar si el archivo JSON procesado de entrada existe
if not os.path.exists(input_json_file): if not os.path.exists(input_json_file):
print(f"Error: Processed JSON file not found: '{input_json_file}'") print(f"Error: Processed JSON file not found: '{input_json_file}'")
print(f"Ensure 'x2_process.py' ran successfully for '{args.source_xml_filepath}'.") print(f"Ensure 'x2_process.py' ran successfully for '{args.source_xml_filepath}'.")
sys.exit(1) sys.exit(1) # Salir si el archivo de entrada no existe
else: else:
# Llamar a la función principal con los nombres derivados
generate_scl(input_json_file, output_scl_file) generate_scl(input_json_file, output_scl_file)