CtrEditor/Python/tsnet/postprocessing/detect_cusum.py

191 lines
7.4 KiB
Python

"""
The tsnet.postprocessing.detect_cusum module contains function to perform
Cumulative sum algorithm (CUSUM) to detect abrupt changes in data.
"""
import numpy as np
import matplotlib.dates as mdates
def detect_cusum(time, x, threshold, drift, show,
ending=True, ax=None):
"""
Parameters
----------
time : 1D array-like
time.
x : 1D array_like
data.
threshold : positive number, optional (default = 1)
amplitude threshold for the change in the data.
drift : positive number, optional (default = 0)
drift term that prevents any change in the absence of change.
ending : bool, optional (default = False)
True (1) to estimate when the change ends; False (0) otherwise.
show : bool, optional (default = True)
True (1) plots data in matplotlib figure, False (0) don't plot.
ax : a matplotlib.axes.Axes instance, optional (default = None).
Returns
-------
tai : 1D array_like, int
index of when the change started.
taf : 1D array_like, int
index of when the change ended (if `ending` is True).
amp : 1D array_like, float
amplitude of changes (if `ending` is True).
Notes
-----
Tuning of the CUSUM algorithm according to Gustafsson (2000)[1]_:
Start with a very large `threshold`.
Choose `drift` to one half of the expected change, or adjust `drift` such
that `g` = 0 more than 50% of the time.
Then set the `threshold` so the required number of false alarms (this can
be done automatically) or delay for detection is obtained.
If faster detection is sought, try to decrease `drift`.
If fewer false alarms are wanted, try to increase `drift`.
If there is a subset of the change times that does not make sense,
try to increase `drift`.
Note that by default repeated sequential changes, i.e., changes that have
the same beginning (`tai`) are not deleted because the changes were
detected by the alarm (`ta`) at different instants. This is how the
classical CUSUM algorithm operates.
If you want to delete the repeated sequential changes and keep only the
beginning of the first sequential change, set the parameter `ending` to
True. In this case, the index of the ending of the change (`taf`) and the
amplitude of the change (or of the total amplitude for a repeated
sequential change) are calculated and only the first change of the repeated
sequential changes is kept. In this case, it is likely that `ta`, `tai`,
and `taf` will have less values than when `ending` was set to False.
See this IPython Notebook [2]_.
References
----------
.. [1] Gustafsson (2000) Adaptive Filtering and Change Detection.
.. [2] hhttp://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/DetectCUSUM.ipynb
"""
x = np.atleast_1d(x).astype('float64')
time = np.atleast_1d(time).astype('float64')
gp, gn = np.zeros(x.size), np.zeros(x.size)
gp_real, gn_real = np.zeros(x.size), np.zeros(x.size)
ta, tai, taf = np.array([[], [], []], dtype=int)
tap, tan = 0, 0
amp = np.array([])
# # Find changes (online form)
# for i in range(1, x.size):
# s = x[i] - x[i-1]
# gp[i] = gp[i-1] + s - drift # cumulative sum for + change
# gn[i] = gn[i-1] - s - drift # cumulative sum for - change
# if gp[i] < 0:
# gp[i], tap = 0, i
# if gn[i] < 0:
# gn[i], tan = 0, i
# if gp[i] > threshold or gn[i] > threshold: # change detected!
# ta = np.append(ta, i) # alarm index
# tai = np.append(tai, tap if gp[i] > threshold else tan) # start
# gp[i], gn[i] = 0, 0 # reset alarm
# # THE CLASSICAL CUSUM ALGORITHM ENDS HERE
# Find changes (online form)
# add gp_real and gn_rel to track the actual amplitude of the transient
for i in range(1, x.size):
s = x[i] - x[i-1]
gp[i] = gp[i-1] + s - drift # cumulative sum for + change
gp_real[i] = gp_real[i-1] + s
gn[i] = gn[i-1] - s - drift # cumulative sum for - change
gn_real[i] = gn_real[i-1] - s
if gp[i] < 0:
gp[i], gp_real[i], tap = 0, 0, i
if gn[i] < 0:
gn[i], gn_real[i], tan = 0, 0, i
if gp_real[i] > threshold or gn_real[i] > threshold: # change detected!
ta = np.append(ta, i) # alarm index
tai = np.append(tai, tap if gp_real[i] > threshold else tan) # start
gp[i], gn[i] = 0, 0 # reset alarm
gp_real[i], gn_real[i] = 0, 0
# THE CLASSICAL CUSUM ALGORITHM ENDS HERE
# Estimation of when the change ends (offline form)
if tai.size and ending:
tai2, _, _ = detect_cusum(time[::-1],x[::-1], threshold, drift, ending=False, show=False)
taf = x.size - tai2[::-1] - 1
# Eliminate repeated changes, changes that have the same beginning
tai, ind = np.unique(tai, return_index=True)
ta = ta[ind]
# taf = np.unique(taf, return_index=False) # corect later
if tai.size != taf.size:
if tai.size < taf.size:
taf = taf[[np.argmax(taf >= i) for i in ta]]
else:
ind = [np.argmax(i >= ta[::-1])-1 for i in taf]
ta = ta[ind]
tai = tai[ind]
# Delete intercalated changes (the ending of the change is after
# the beginning of the next change)
ind = taf[:-1] - tai[1:] > 0
if ind.any():
ta = ta[~np.append(False, ind)]
tai = tai[~np.append(False, ind)]
taf = taf[~np.append(ind, False)]
# Amplitude of changes
amp = x[taf] - x[tai]
if show:
_plot(time, x, threshold, drift, ending, ax, ta, tai, taf,
gp_real, gn_real)
return tai, taf, amp
def _plot(time, x, threshold, drift, ending, ax, ta, tai, taf, gp, gn):
"""Plot results of the detect_cusum function, see its help."""
try:
import matplotlib.pyplot as plt
except ImportError:
print('matplotlib is not available.')
else:
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=(8,4), dpi=100, facecolor='w', edgecolor='k')
ax.plot(time , x, 'k-', lw=2)
if len(ta):
ax.plot(time[tai], x[tai], '>', mfc='r', mec='r', ms=10,
label='Start')
if ending:
ax.plot(time[taf], x[taf], '<', mfc='r', mec='r', ms=10,
label='End')
ax.legend(loc='best', framealpha=.5, numpoints=1)
ax.set_xlim([time[0], time[-1]])
ax.set_xlabel('Time [s]', fontsize=14)
ax.set_ylabel('Pressure Head [m]', fontsize=14)
ymin, ymax = x[np.isfinite(x)].min(), x[np.isfinite(x)].max()
yrange = ymax - ymin if ymax > ymin else 1
ax.set_ylim(ymin - 0.1*yrange, ymax + 0.1*yrange)
# ax2.plot(time, gp, 'y-', label='+')
# ax2.plot(time, gn, 'm-', label='-')
# ax2.set_xlim([time[0], time[-1]])
# ax2.set_xlabel('Time', fontsize=14)
# ax2.set_ylim(-0.01*threshold, 1.1*threshold)
# ax2.axhline(threshold, color='r')
# ax2.set_ylabel('Cumulative Sum (c)', fontsize=14)
# # ax2.set_title('Time series of the cumulative sums of ' +
# # 'positive and negative changes')
# ax2.set_title('(b)', fontsize=14)
# ax2.legend(loc='best', framealpha=.5, numpoints=1)
# plt.tight_layout()
plt.show()