CtrEditor/ObjetosSim/SensoresComandos/ucGearEncoder.xaml.cs

249 lines
7.8 KiB
C#

using LibS7Adv;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using CommunityToolkit.Mvvm.ComponentModel;
using System.Diagnostics;
using Xceed.Wpf.Toolkit.PropertyGrid.Attributes;
using System.ComponentModel;
using CtrEditor.FuncionesBase;
namespace CtrEditor.ObjetosSim
{
/// <summary>
/// Interaction logic for ucGearEncoder.xaml
/// </summary>
public partial class osGearEncoder : osBase, IosBase
{
private osBase Motor = null;
private Stopwatch Stopwatch = new Stopwatch();
private double stopwatch_last = 0;
// Otros datos y métodos relevantes para la simulación
public static string NombreClase()
{
return "Ruota Fonica";
}
private string nombre = NombreClase();
public override string Nombre
{
get => nombre;
set => SetProperty(ref nombre, value);
}
[ObservableProperty]
public string tag;
[ObservableProperty]
public bool pulso;
partial void OnPulsoChanged(bool value)
{
if (value)
{
var dTime = Stopwatch.ElapsedMilliseconds - stopwatch_last;
stopwatch_last = Stopwatch.ElapsedMilliseconds;
Tiempo_Pulso = (float)dTime;
}
EscribirBitTag(Tag, Pulso);
if (value)
Color_oculto = Brushes.LightGreen;
else
Color_oculto = Brushes.Gray;
}
[ObservableProperty]
private Brush color_oculto;
[ObservableProperty]
public float velocidadActual;
public override void AnguloChanged(float value)
{
// Generar pulsos cuadrados en función del ángulo
Pulso = DetectarDiente();
}
[ObservableProperty]
public float tiempo_Pulso;
[ObservableProperty]
public float pulsos_Por_Segundo;
partial void OnPulsos_Por_SegundoChanged(float value)
{
if (VelocidadActual > 0)
Giros_segundo_a_100 = (float)((pulsos_Por_Segundo / Dientes) * 100 / VelocidadActual);
}
[ObservableProperty]
private bool homing;
partial void OnHomingChanged(bool value)
{
homing = false;
Angulo = 0;
}
[ObservableProperty]
public float dientes;
[ObservableProperty]
public float radio_Interno;
[ObservableProperty]
public float radio_Externo;
[ObservableProperty]
public float ancho_Dientes;
[ObservableProperty]
public float giros_segundo_a_100;
public override void OnResize(float Delta_Width, float Delta_Height)
{
Radio_Externo += Delta_Width;
Radio_Interno += Delta_Height;
}
[ObservableProperty]
[property: Description("Link to Motor")]
[property: Category("PLC link:")]
[property: ItemsSource(typeof(osBaseItemsSource<osVMmotorSim>))]
string id_Motor;
partial void OnId_MotorChanged(string value)
{
if (Motor != null)
Motor.PropertyChanged -= OnMotorPropertyChanged;
if (_mainViewModel != null && value != null && value.Length > 0)
{
Motor = (osVMmotorSim)_mainViewModel.ObjetosSimulables.FirstOrDefault(s => (s is osVMmotorSim && s.Nombre == value), null);
if (Motor != null)
Motor.PropertyChanged += OnMotorPropertyChanged;
}
}
private void OnMotorPropertyChanged(object sender, PropertyChangedEventArgs e)
{
if (e.PropertyName == nameof(osVMmotorSim.Nombre))
{
Id_Motor = ((osVMmotorSim)sender).Nombre;
}
}
public osGearEncoder()
{
Ancho_Dientes = 0.5f;
Dientes = 10;
Radio_Interno = 0.5f;
Radio_Externo = 0.6f;
Color_oculto = Brushes.Gray;
Stopwatch.Start();
}
public override void UpdateGeometryStart()
{
// Se llama antes de la simulacion
}
public override void UpdatePLC(PLCViewModel plc, int elapsedMilliseconds)
{
if (Motor != null)
{
if (Motor is osVMmotorSim motor)
{
VelocidadActual = motor.Velocidad;
// Calcular la cantidad de giros por segundo
double girosPorSegundo = (VelocidadActual / 100.0) * Giros_segundo_a_100;
// Calcular la fracción del segundo que ha pasado
double segundosTranscurridos = elapsedMilliseconds / 1000.0;
// Calcular el incremento de ángulo
double incrementoAngulo = (girosPorSegundo * 360.0) * segundosTranscurridos;
// Actualizar el ángulo
Angulo = (float) (Angulo + incrementoAngulo) % 360;
}
}
}
public bool DetectarDiente()
{
double angleStep = 360.0 / Dientes;
double halfToothWidthAngle = (angleStep * Ancho_Dientes) / 2;
// Normalize the Angulo to be within 0-360 degrees
double normalizedAngle = Angulo % 360;
if (normalizedAngle < 0) normalizedAngle += 360;
// Calculate the position of the first tooth's center at angle 0
double firstToothCenterAngle = 0;
// Calculate the angular distance from the current angle to the first tooth's center
double angularDistance = Math.Abs(firstToothCenterAngle - normalizedAngle);
if (angularDistance > 180) angularDistance = 360 - angularDistance;
// Check if the normalized angle falls within the segment of the first tooth
if (angularDistance <= halfToothWidthAngle)
{
return true;
}
// Calculate the number of steps to reach the nearest tooth's center
int steps = (int)Math.Round(normalizedAngle / angleStep);
// Calculate the angular position of the nearest tooth's center
double nearestToothCenterAngle = steps * angleStep;
// Calculate the angular distance from the current angle to the nearest tooth's center
angularDistance = Math.Abs(nearestToothCenterAngle - normalizedAngle);
if (angularDistance > 180) angularDistance = 360 - angularDistance;
// Check if the normalized angle falls within the segment of the nearest tooth
return angularDistance <= halfToothWidthAngle;
}
public override void UpdateControl(int elapsedMilliseconds)
{
// Calculamos la velocidad
}
public override void ucLoaded()
{
// El UserControl ya se ha cargado y podemos obtener las coordenadas para
// crear el objeto de simulacion
base.ucLoaded();
OnId_MotorChanged(Id_Motor); // Link Id_Motor = Motor
}
}
public partial class ucGearEncoder : UserControl, IDataContainer
{
public osBase? Datos { get; set; }
public ucGearEncoder()
{
InitializeComponent();
this.Loaded += OnLoaded;
this.Unloaded += OnUnloaded;
}
private void OnLoaded(object sender, RoutedEventArgs e)
{
Datos?.ucLoaded();
}
private void OnUnloaded(object sender, RoutedEventArgs e)
{
Datos?.ucUnLoaded();
}
public void Highlight(bool State) { }
public ZIndexEnum ZIndex()
{
return ZIndexEnum.Estaticos;
}
}
}