MenuBase/services/llm/openai_service.py

69 lines
2.7 KiB
Python

# services/llm/openai_service.py
"""
OpenAI service implementation
"""
from openai import OpenAI
from typing import Dict, List
import json
from .base import LLMService
from config.api_keys import APIKeyManager
class OpenAIService(LLMService):
def __init__(self, model: str = "gpt-4o-mini", temperature: float = 0.3):
api_key = APIKeyManager.get_openai_key()
if not api_key:
raise ValueError("OpenAI API key not found. Please set up your API keys.")
self.client = OpenAI(api_key=api_key)
self.model = model
self.temperature = temperature
def generate_text(self, prompt: str) -> str:
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=self.temperature,
max_tokens=1500
)
return response.choices[0].message.content
except Exception as e:
print(f"Error in OpenAI API call: {e}")
return None
def get_similarity_scores(self, texts_pairs: Dict[str, List[str]]) -> List[float]:
system_prompt = (
"Evaluate the semantic similarity between the following table of pairs of texts in json format on a scale from 0 to 1. "
"Return the similarity scores for every row in JSON format as a list of numbers, without any additional text or formatting."
)
request_payload = json.dumps(texts_pairs)
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": request_payload}
],
temperature=self.temperature,
max_tokens=1500
)
response_content = response.choices[0].message.content
cleaned_response = response_content.strip().strip("'```json").strip("```")
try:
scores = json.loads(cleaned_response)
if isinstance(scores, dict) and "similarity_scores" in scores:
return scores["similarity_scores"]
elif isinstance(scores, list):
return scores
else:
raise ValueError("Unexpected response format")
except json.JSONDecodeError:
raise ValueError("Could not decode response as JSON")
except Exception as e:
print(f"Error in OpenAI similarity calculation: {e}")
return None