Compare commits

...

6 Commits

58 changed files with 11714 additions and 7675 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -27,360 +27,348 @@ END_VAR
BEGIN
// Network 1: Clock Generation
// Network 1: Clock Generation (Original Language: LAD)
Clock_Signal();
// Network 2: Machine Init
// Network 2: Machine Init (Original Language: LAD)
BlenderCtrl_MachineInit();
// Network 3: Filler Head
// Network 3: Filler Head (Original Language: LAD)
// RLO: "AUX FALSE"
IF "AUX FALSE" THEN
"Block_Move_Err" := BLKMOV(SRCBLK := "HMI_PID"."PPM303", DSTBLK => "Filler_Head_Variables"."FillerHead"); // ADVERTENCIA: BLKMOV usado directamente, probablemente no compile!
END_IF;
// Network 4: Emergency Pressed
// Network 4: Emergency Pressed (Original Language: LAD)
// RLO: "gIN_VoltageOk"
// Logic moved to Coil 26
"gEmergencyPressed" := NOT "gIN_VoltageOk" AND "M19000";
"M19000" := "gIN_VoltageOk"; // N_TRIG("gIN_VoltageOk")
// Network 5: Air and CO2 pressure ok and auxiliary ok
// Network 5: Air and CO2 pressure ok and auxiliary ok (Original Language: LAD)
// RLO: "gIN_LinePressCO2Ok"
// RLO: "gWorkshopTest"
// RLO: "gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")
// RLO: ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")
// RLO: ("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered"
// RLO: (NOT "Disable_Bit")
// RLO: (("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered") OR (NOT "Disable_Bit") AND "gIN_VoltageOk"
"gBlenderSuppliesOk" := (("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered") OR (NOT "Disable_Bit") AND "gIN_VoltageOk";
"gBlenderSuppliesOk" := (("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND "HMI_Digital"."_PAL_S11"."Filtered") OR ("gIN_LinePressCO2Ok" OR ("gWorkshopTest" AND (NOT "gWorkshop_Co2_Presence")) AND (NOT "gWorkshop_CIP_Signals")) AND (NOT "Disable_Bit") AND "gIN_VoltageOk";
// Network 6: Blender State Num
// Network 6: Blender State Num (Original Language: LAD)
"HMI_Variables_Status"."Procedures"."BlenderStateNum" := 0;
// Network 7: Delay Power On
// Network 7: Delay Power On (Original Language: LAD)
// RLO: "FirstScan"
"mDelayPowerOnTmr"(IN := "FirstScan", PT := S5T#2S); // TODO: Declarar "mDelayPowerOnTmr" : TP; en VAR_STAT o VAR
// Network 8: Production Mode
// Network 8: Production Mode (Original Language: LAD)
// RLO: "HMI_Variables_Status"."System"."Blender_Prod_CIP"
"gBlenderProdMode" := "HMI_Variables_Status"."System"."Blender_Prod_CIP";
// Network 9: CIp Mode
// Network 9: CIp Mode (Original Language: LAD)
// RLO: (NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP")
"gBlenderCIPMode" := (NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP");
"HMI_Variables_Status"."Procedures"."BlenderStateNum" := 19;
IF (NOT "HMI_Variables_Status"."System"."Blender_Prod_CIP") THEN
"HMI_Variables_Status"."Procedures"."BlenderStateNum" := 19;
END_IF;
// Network 10: Error Faults
// Network 10: Error Faults (Original Language: LAD)
// RLO: (NOT "AUX FALSE")
IF (NOT "AUX FALSE") THEN
"HMI_Variables_Status"."Meters"."QTM3012_PRD_Fault" := FALSE;
END_IF;
IF (NOT "AUX FALSE") THEN
"gmPDS2000_Error_Fault" := FALSE;
END_IF;
IF (NOT "AUX FALSE") THEN
"HMI_Variables_Status"."Meters"."QTM3012_PRD_Run" := FALSE;
END_IF;
IF (NOT "AUX FALSE") THEN
"gNoFreezeProductMeter" := FALSE;
END_IF;
// Network 11: Filler Bottle Count Used to push Product
// Network 11: Filler Bottle Count Used to push Product (Original Language: LAD)
// RLO: (NOT "System_RunOut_Variables"."ProdPipeRunOutWaterCount")
"System_RunOut_Variables"."ProdPipeRunOutFillerBott" := (NOT "System_RunOut_Variables"."ProdPipeRunOutWaterCount");
// Network 12: Water Bypass Enable
// Network 12: Water Bypass Enable (Original Language: LAD)
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass"
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair"
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation")
// RLO: ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation"))) AND "Blender_Variables_Pers"."gWaterRecipe"
// RLO: (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation"))) AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe")
"gStillWaterByPassEn" := (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass" OR ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_ByPassDeair" AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Deaireation"))) AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe");
// Network 13: Still Water Bypass
// Network 13: Still Water Bypass (Original Language: LAD)
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem"
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass"
// RLO: ("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass") AND "Blender_Variables_Pers"."gWaterRecipe"
// RLO: (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass") AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe")
"gBlendFiStillWaterByPass" := (("HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BlendFillSystem" AND "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_StillWaterByPass") AND "Blender_Variables_Pers"."gWaterRecipe") AND (NOT "Blender_Variables_Pers"."gCarboStillRecipe");
// Network 14: Manual Syrup Drain Valve Open - Operator Alarm
// Network 14: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD)
// RLO: "gSyrupRoomEn"
// RLO: "gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")
// RLO: ("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled")
// RLO: ("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done"
// RLO: (("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND (NOT "Procedure_Variables"."Syr_RunOut"."Done")
// RLO: "gBlenderCIPMode"
// RLO: "gBlenderCIPMode" AND "gIN_CIP_CIPRunning"
// RLO: ("gBlenderCIPMode" AND "gIN_CIP_CIPRunning") AND "Procedure_Variables"."Blender_Run"."Running"
"gHVP301_Open" := (("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND (NOT "Procedure_Variables"."Syr_RunOut"."Done") OR (("gBlenderCIPMode" AND "gIN_CIP_CIPRunning") AND "Procedure_Variables"."Blender_Run"."Running");
"gHVP301_Open" := (("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND (NOT "Procedure_Variables"."Syr_RunOut"."Done") OR (((("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND "gBlenderCIPMode") AND "gIN_CIP_CIPRunning") AND "Procedure_Variables"."Blender_Run"."Running");
// Network 15: Manual Syrup Drain Valve Open - Operator Alarm
// Network 15: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD)
// RLO: "gIN_HVM302_Aux"
"mHVM302_Dly"(IN := "gIN_HVM302_Aux", PT := S5T#1S); // TODO: Declarar "mHVM302_Dly" : TON; en VAR_STAT o VAR
"gHVM302_Open" := "mHVM302_Dly".Q;
// Network 16: Maselli Control
// Network 16: Maselli Control (Original Language: LAD)
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BrixMeter"
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 6 THEN
Maselli_PA_Control();
END_IF;
// Network 17: mPDS Control
// Network 17: mPDS Control (Original Language: LAD)
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BrixMeter"
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 5 THEN
mPDS_PA_Control();
END_IF;
// Network 18: mPDS Syrup Control
// Network 18: mPDS Syrup Control (Original Language: LAD)
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_SyrBrixMeter"
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_SyrBrixMeter" THEN
mPDS_SYR_PA_Control();
END_IF;
// Network 19: Co2 Analog Input
// Network 19: Co2 Analog Input (Original Language: LAD)
// GetProdBrixCO2_FromAnalogIn
// CALL "GetProdBrixCO2_FromAn"
// NOP 0
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_BrixMeter"
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_MeterType" = 3 THEN
GetProdBrixCO2_Anal_Inpt();
END_IF;
// Network 20: Quality
// Network 20: Quality (Original Language: LAD)
ProductQuality();
// Network 21: Input Data
// Network 21: Input Data (Original Language: LAD)
"Input_Data"();
// Network 22: Sel Brix Source Check
// Network 22: Sel Brix Source Check (Original Language: LAD)
SelCheckBrixSource();
// Network 23: Check Water Cooling System Temperature
// Network 23: Check Water Cooling System Temperature (Original Language: LAD)
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_InverterRecirPumpPPM306"
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_InverterRecirPumpPPM306" THEN
CTRLCoolingSystem();
END_IF;
// Network 24: Tank Level
// Network 24: Tank Level (Original Language: LAD)
TankLevel();
// Network 25: Production ONS
// Network 25: Production ONS (Original Language: LAD)
// RLO: "gBlenderProdMode"
// // PBox 26 - Passing memory bit: "M19001"
// RLO: "M19001" AND (NOT "mDelayPowerOnTmr")
"gProductionONS" := "M19001" AND (NOT "mDelayPowerOnTmr");
// PBox Logic moved to consumer Coil
"gProductionONS" := ("gBlenderProdMode" AND NOT "M19001") AND (NOT "mDelayPowerOnTmr");
// Network 26: Blender Prod Mode Init
// Network 26: Blender Prod Mode Init (Original Language: LAD)
// RLO: "gProductionONS"
// RLO: "Procedure_Variables"."Blender_Rinse"."ONS_Done"
// RLO: ("gProductionONS" OR "Procedure_Variables"."Blender_Rinse"."ONS_Done") AND (NOT "Blender_Variables_Pers"."gBlenderStarted")
IF ("gProductionONS" OR "Procedure_Variables"."Blender_Rinse"."ONS_Done") AND (NOT "Blender_Variables_Pers"."gBlenderStarted") THEN
BlenderCtrl_ProdModeInit();
END_IF;
// Network 27: Rinse ONS
// Network 27: Rinse ONS (Original Language: LAD)
// RLO: "HMI_Variables_Status"."System"."Blender_Prod_CIP"
// // PBox 26 - Passing memory bit: "M19002"
// RLO: "M19002" AND (NOT "mDelayPowerOnTmr")
"gRinseONS" := "M19002" AND (NOT "mDelayPowerOnTmr");
// PBox Logic moved to consumer Coil
"gRinseONS" := ("HMI_Variables_Status"."System"."Blender_Prod_CIP" AND NOT "M19002") AND (NOT "mDelayPowerOnTmr");
// Network 28: CIP ONS
// Network 28: CIP ONS (Original Language: LAD)
// RLO: "gBlenderCIPMode"
// // PBox 26 - Passing memory bit: "M19003"
// RLO: "M19003" AND (NOT "mDelayPowerOnTmr")
"gCIPONS" := "M19003" AND (NOT "mDelayPowerOnTmr");
// PBox Logic moved to consumer Coil
"gCIPONS" := ("gBlenderCIPMode" AND NOT "M19003") AND (NOT "mDelayPowerOnTmr");
// Network 29: CIp Mode Init
// Network 29: CIp Mode Init (Original Language: LAD)
// RLO: "gCIPONS"
IF "gCIPONS" THEN
BlenderCtrl_CIPModeInit();
END_IF;
// Network 30: Reset SPWords
// Network 30: Reset SPWords (Original Language: LAD)
BlenderCtrl_ResetSPWord();
// Network 31: Blender Run Control
// Network 31: Blender Run Control (Original Language: LAD)
BlenderRun__Control();
// Network 32: Tank Pressure Control
// Network 32: Tank Pressure Control (Original Language: LAD)
Prod_Tank_PressCtrl();
// Network 33: Balaiage
// Network 33: Balaiage (Original Language: LAD)
Baialage();
// Network 34: First Production
// Network 34: First Production (Original Language: LAD)
"FirstProduction_Data"();
// Network 35: CIP MAIN Calling
// Network 35: CIP MAIN Calling (Original Language: LAD)
CIPMain();
// Network 36: Blender Rinse
// Network 36: Blender Rinse (Original Language: LAD)
BlenderRinse();
// Network 37: Safeties
// Network 37: Safeties (Original Language: LAD)
Safeties();
// Network 38: Instrument Scanner
// Network 38: Instrument Scanner (Original Language: LAD)
Instrument_Scanner();
// Network 39: Vacuum Control
// Network 39: Vacuum Control (Original Language: LAD)
VacuumCtrl();
// Network 40: Syrup Room Control
// Network 40: Syrup Room Control (Original Language: LAD)
SyrupRoomCtrl();
// Network 41: Blend Procedure Data
// Network 41: Blend Procedure Data (Original Language: LAD)
// RLO: (NOT "mDelayPowerOnTmr")
IF (NOT "mDelayPowerOnTmr") THEN
"Blender_Procedure Data"();
END_IF;
// Network 42: Pneumatic Valve Control
// Network 42: Pneumatic Valve Control (Original Language: LAD)
Pneumatic_Valve_Ctrl();
// Network 43: Pumps Control
// Network 43: Pumps Control (Original Language: LAD)
PumpsControl();
// Network 44: Prod Report Manager
// Network 44: Prod Report Manager (Original Language: LAD)
// RLO: "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Report"
IF "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Report" THEN
ProdReportManager();
END_IF;
// Network 45: Outputs
// Network 45: Outputs (Original Language: LAD)
Output();
// Network 46: SLIM BLOCK
// Network 46: SLIM BLOCK (Original Language: LAD)
SLIM_Block();
// Network 47: Interlocking Panel 1
// Network 47: Interlocking Panel 1 (Original Language: LAD)
Interlocking_Panel_1();
// Network 48: Filler Control
// Network 48: Filler Control (Original Language: LAD)
FillerControl();
// Network 49: Blender Ctrl Update PWORD
// Network 49: Blender Ctrl Update PWORD (Original Language: LAD)
BlenderCtrl_UpdatePWord();
// Network 50: ResetTotalizer
// Network 50: ResetTotalizer (Original Language: LAD)
// RLO: "gBlendResetTotalizer"
"mResetTotalizerTmr"(IN := "gBlendResetTotalizer", PT := S5T#2S); // TODO: Declarar "mResetTotalizerTmr" : TP; en VAR_STAT o VAR
// Network 51: ResetWaterTot
// Network 51: ResetWaterTot (Original Language: LAD)
// RLO: "gFTN301_ResetTot"
// RLO: "mResetTotalizerTmr"
"mResetFTN301TotTmr"(IN := "gFTN301_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTN301TotTmr" : TP; en VAR_STAT o VAR
"mResetWaterTot" := "mResetFTN301TotTmr".Q;
// Network 52: Water VFM Reset Totalizer
// Network 52: Water VFM Reset Totalizer (Original Language: LAD)
// RLO: "gFTN301_ResetTot"
IF "gFTN301_ResetTot" THEN
"gFTN301_ResetTot" := FALSE;
END_IF;
// Network 53: ResetCO2Tot
// Network 53: ResetCO2Tot (Original Language: LAD)
// RLO: "gFTP302_ResetTot"
// RLO: "mResetTotalizerTmr"
"mResetFTP302TotTmr"(IN := "gFTP302_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTP302TotTmr" : TP; en VAR_STAT o VAR
"mResetSyrupTot" := "mResetFTP302TotTmr".Q AND "gSyrupRoomEn";
// Network 54: Syrup MFM Reset Totalizer
// Network 54: Syrup MFM Reset Totalizer (Original Language: LAD)
// RLO: "gFTP302_ResetTot"
IF "gFTP302_ResetTot" THEN
"gFTP302_ResetTot" := FALSE;
END_IF;
// Network 55: ResetProductTot
// Network 55: ResetProductTot (Original Language: LAD)
// RLO: "gFTM303_ResetTot"
// RLO: "mResetTotalizerTmr"
"mResetFTM303TotTmr"(IN := "gFTM303_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTM303TotTmr" : TP; en VAR_STAT o VAR
"mResetCO2Tot" := "mResetFTM303TotTmr".Q;
// Network 56: CO2 MFM Reset Tot
// Network 56: CO2 MFM Reset Tot (Original Language: LAD)
// RLO: "gFTM303_ResetTot"
IF "gFTM303_ResetTot" THEN
"gFTM303_ResetTot" := FALSE;
END_IF;
// Network 57: ResetCO2Tot
// Network 57: ResetCO2Tot (Original Language: LAD)
// RLO: "gProductMFMResetTot"
// RLO: "mResetTotalizerTmr"
"mResetProductTotTmr"(IN := "gProductMFMResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetProductTotTmr" : TP; en VAR_STAT o VAR
"mResetProductTot" := "mResetProductTotTmr".Q;
// Network 58: Reset Totalizer
// Network 58: Reset Totalizer (Original Language: LAD)
// RLO: "gProductMFMResetTot"
IF "gProductMFMResetTot" THEN
"gProductMFMResetTot" := FALSE;
END_IF;
// Network 59: Reset Totalizer
// Network 59: Reset Totalizer (Original Language: LAD)
// RLO: "gBlendResetTotalizer"
IF "gBlendResetTotalizer" THEN
"gBlendResetTotalizer" := FALSE;
END_IF;
// Network 60: Blender Ctrl Command
// Network 60: Blender Ctrl Command (Original Language: LAD)
// RLO: (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Simulation")
IF (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_Simulation") THEN
BlenderCtrl_MFM_Command();
END_IF;
// Network 61: DP Global Diag
// Network 61: DP Global Diag (Original Language: LAD)
CPU_DP_Global_Diag();
// Network 62: Profibus
// Network 62: Profibus (Original Language: LAD)
Profibus_Network();
// Network 63: Valve Fault
// Network 63: Valve Fault (Original Language: LAD)
ModValveFault();
// Network 64: All Auto
// Network 64: All Auto (Original Language: LAD)
// RLO: "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Command"
// RLO: "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Command" AND "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Enable"
// NBox Logic moved to consumer Coil
IF NOT ("HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Command" AND "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Enable") AND "M19011" THEN
BlenderCtrl_All_Auto();
END_IF;
"HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Light" := "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Command" AND "HMI_Variables_Cmd"."Commands_From_HMI"."F7_DeviceControl"."Enable";
// Network 65: Ctrl HMI Manual Active
// Network 65: Ctrl HMI Manual Active (Original Language: LAD)
BlenderCtrl_ManualActive();
// Network 66: Mod Copy Recipe
// Network 66: Mod Copy Recipe (Original Language: LAD)
// RLO: "HMI_Variables_Cmd"."Recipe"."Main_Page"
// RLO: "HMI_Variables_Cmd"."Recipe"."Main_Page" AND (NOT "mFP_Recip_Main_Page")
"mAux_FP_M700_1" := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND (NOT "mFP_Recip_Main_Page");
// RLO: "HMI_Variables_Cmd"."Recipe"."Main_Page"
// RLO: "HMI_Variables_Cmd"."Recipe"."Main_Page" AND "HMI_Variables_Cmd"."Recipe"."Edit"
// RLO: "mAux_FP_M700_1"
"mFP_Recip_Main_Page" := "HMI_Variables_Cmd"."Recipe"."Main_Page";
"T_Pulse_Recipe_Edit"(IN := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND "HMI_Variables_Cmd"."Recipe"."Edit", PT := S5T#500ms); // TODO: Declarar "T_Pulse_Recipe_Edit" : TP; en VAR_STAT o VAR
IF "T_Pulse_Recipe_Edit".Q AND "T_Pulse_Recipe_Edit" THEN
"HMI_Variables_Cmd"."Recipe"."Edit" := FALSE;
END_IF;
IF "mAux_FP_M700_1" THEN
"HMI_Variables_Cmd"."Recipe"."Edit" := TRUE;
END_IF;
// Network 67: to HMI - Recipe Management
// Network 67: to HMI - Recipe Management (Original Language: LAD)
// RLO: "AUX TRUE"
IF "AUX TRUE" THEN
"RecipeManagement_Data"();
END_IF;
// Network 68: Recipe Calculation
// Network 68: Recipe Calculation (Original Language: LAD)
RecipeCalculation();

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,132 +0,0 @@
// Block Name (Original): BlenderRun_ProdTime
// Block Number: 2040
// Original Language: LAD
FUNCTION_BLOCK "BlenderRun_ProdTime"
{ S7_Optimized_Access := 'TRUE' }
VERSION : 0.1
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR_IN_OUT
END_VAR
VAR_TEMP
m1MinONS : Bool;
m1HourONS : Bool;
Buffer : Bool;
mRunMin : Bool;
mRunHr : Bool;
I_DIRunning_sec : DInt;
I_DIRunning_min : DInt;
MOD60 : DInt;
END_VAR
BEGIN
// Network 1: Seconds
// RLO: "Procedure_Variables"."Blender_Run"."Running"
// RLO: "Procedure_Variables"."Blender_Run"."Running" AND "CLK_1.0S"
IF "Procedure_Variables"."Blender_Run"."Running" AND "CLK_1.0S" THEN
"Blender_Variables_Pers"."gSLIM_Sec" := "Blender_Variables_Pers"."gSLIM_Sec" + 1;
END_IF;
// Network 2: Reset Hours
// RLO: "SLIM_Variables"."ResetHour"
IF "SLIM_Variables"."ResetHour" THEN
"Blender_Variables_Pers"."gSLIM_Sec" := 0;
END_IF;
// Network 3: Seconds Counter
// RLO: "gBlenderBlending"
// RLO: "gBlenderBlending" AND "CLK_1.0S"
IF "gBlenderBlending" AND "CLK_1.0S" THEN
"Blender_Variables_Pers"."gProdSec" := "Blender_Variables_Pers"."gProdSec" + 1;
END_IF;
// Network 4: Minute
"m1MinONS" := "Blender_Variables_Pers"."gProdSec" = 60;
// Network 5: Minute Counter
IF "m1MinONS" THEN
"Blender_Variables_Pers"."gProdSec" := 0;
"Blender_Variables_Pers"."gProdMin" := "Blender_Variables_Pers"."gProdMin" + 1;
END_IF;
// Logic included in grouped IF (by UID 27)
// Logic included in grouped IF (by UID 27)
// Network 6: Hour
"m1HourONS" := "Blender_Variables_Pers"."gProdMin" = 60;
// Network 7: Hour Counter
IF "m1HourONS" THEN
"Blender_Variables_Pers"."gProdMin" := 0;
"Blender_Variables_Pers"."gProdHour" := "Blender_Variables_Pers"."gProdHour" + 1;
"Blender_Variables_Pers"."gBlendingMaintHour" := "Blender_Variables_Pers"."gBlendingMaintHour" + 1;
END_IF;
// Logic included in grouped IF (by UID 30)
// Logic included in grouped IF (by UID 30)
// Logic included in grouped IF (by UID 30)
// Network 8: Counter reset
// RLO: "gBlenderCIPMode"
// RLO: "gBlenderRinseMode"
IF "gBlenderCIPMode" OR "gBlenderRinseMode" THEN
"Blender_Variables_Pers"."gProdSec" := 0;
"Blender_Variables_Pers"."gProdMin" := 0;
"Blender_Variables_Pers"."gProdHour" := 0;
END_IF;
// Logic included in grouped IF (by UID 31)
// Logic included in grouped IF (by UID 31)
// Logic included in grouped IF (by UID 31)
// Network 9: Running Seconds
// RLO: "Procedure_Variables"."Blender_Run"."Running"
// RLO: "Procedure_Variables"."Blender_Run"."Running" AND "CLK_1.0S"
IF "Procedure_Variables"."Blender_Run"."Running" AND "CLK_1.0S" THEN
"Blender_Variables_Pers"."gRunningSeconds" := "Blender_Variables_Pers"."gRunningSeconds" + 1;
END_IF;
// Network 10: Running Minutes
"I_DIRunning_sec" := "Blender_Variables_Pers"."gRunningSeconds";
"MOD60" := "I_DIRunning_sec" MOD DINT#60;
// RLO: "MOD60" = DINT#0 AND "Procedure_Variables"."Blender_Run"."Running"
// RLO: ("MOD60" = DINT#0 AND "Procedure_Variables"."Blender_Run"."Running") AND "CLK_1.0S"
IF ("MOD60" = DINT#0 AND "Procedure_Variables"."Blender_Run"."Running") AND "CLK_1.0S" THEN
"Blender_Variables_Pers"."gRunningMinutes" := "Blender_Variables_Pers"."gRunningMinutes" + 1;
END_IF;
// Logic moved to Coil 42
"mRunMin" := ("MOD60" = DINT#0) AND NOT "M19012";\n"M19012" := ("MOD60" = DINT#0); // P_TRIG(("MOD60" = DINT#0)) (Mem update handled by consumer)
// Network 11: Running Hours for Maintenance
// RLO: "mRunMin"
IF "mRunMin" THEN
"I_DIRunning_min" := "Blender_Variables_Pers"."gRunningMinutes";
END_IF;
IF "mRunMin" THEN
"MOD60" := "I_DIRunning_min" MOD DINT#60;
END_IF;
IF "MOD60" = DINT#0 THEN
"Blender_Variables_Pers"."gRunningMaintHour" := "Blender_Variables_Pers"."gRunningMaintHour" + 1;
END_IF;
// Network 12: Running Hours for Maintenance
"HMI_Variables_Status"."System"."BlendingMaintHour" := "Blender_Variables_Pers"."gRunningMaintHour";
END_FUNCTION_BLOCK

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -27,11 +27,49 @@ END_VAR
BEGIN
// Network 1: Filler Head
// Network 1: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD)
// RLO: "AUX FALSE"
IF "AUX FALSE" THEN
"Block_Move_Err" := BLKMOV(SRCBLK := "HMI_PID"."PPM303", DSTBLK => "Filler_Head_Variables"."FillerHead"); // ADVERTENCIA: BLKMOV usado directamente, probablemente no compile!
"gHVP301_Open" := (("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND (NOT "HMI_Blender_Parameters"."Processor_Options"."Blender_OPT"."_FastChangeOverEnabled") AND "Procedure_Variables"."FTP302Line_Preparation"."Done") AND (NOT "Procedure_Variables"."Syr_RunOut"."Done") OR (((("gSyrupRoomEn" AND (NOT "gIN_HVP301_Aux")) AND "gBlenderCIPMode") AND "gIN_CIP_CIPRunning") AND "Procedure_Variables"."Blender_Run"."Running");
// Network 2: Manual Syrup Drain Valve Open - Operator Alarm (Original Language: LAD)
"mHVM302_Dly"(IN := "gIN_HVM302_Aux", PT := S5T#1S); // TODO: Declarar "mHVM302_Dly" : TON; en VAR_STAT o VAR
"gHVM302_Open" := "mHVM302_Dly".Q;
// Network 3: ResetTotalizer (Original Language: LAD)
"mResetTotalizerTmr"(IN := "gBlendResetTotalizer", PT := S5T#2S); // TODO: Declarar "mResetTotalizerTmr" : TP; en VAR_STAT o VAR
// Network 4: ResetWaterTot (Original Language: LAD)
"mResetFTN301TotTmr"(IN := "gFTN301_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTN301TotTmr" : TP; en VAR_STAT o VAR
"mResetWaterTot" := "mResetFTN301TotTmr".Q;
// Network 5: ResetCO2Tot (Original Language: LAD)
"mResetFTP302TotTmr"(IN := "gFTP302_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTP302TotTmr" : TP; en VAR_STAT o VAR
"mResetSyrupTot" := "mResetFTP302TotTmr".Q AND "gSyrupRoomEn";
// Network 6: ResetProductTot (Original Language: LAD)
"mResetFTM303TotTmr"(IN := "gFTM303_ResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetFTM303TotTmr" : TP; en VAR_STAT o VAR
"mResetCO2Tot" := "mResetFTM303TotTmr".Q;
// Network 7: ResetCO2Tot (Original Language: LAD)
"mResetProductTotTmr"(IN := "gProductMFMResetTot" OR "mResetTotalizerTmr", PT := S5T#2S); // TODO: Declarar "mResetProductTotTmr" : TP; en VAR_STAT o VAR
"mResetProductTot" := "mResetProductTotTmr".Q;
// Network 8: Mod Copy Recipe (Original Language: LAD)
"mAux_FP_M700_1" := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND (NOT "mFP_Recip_Main_Page");
"mFP_Recip_Main_Page" := "HMI_Variables_Cmd"."Recipe"."Main_Page";
"T_Pulse_Recipe_Edit"(IN := "HMI_Variables_Cmd"."Recipe"."Main_Page" AND "HMI_Variables_Cmd"."Recipe"."Edit", PT := S5T#500ms); // TODO: Declarar "T_Pulse_Recipe_Edit" : TP; en VAR_STAT o VAR
IF "T_Pulse_Recipe_Edit".Q AND "T_Pulse_Recipe_Edit" THEN
"HMI_Variables_Cmd"."Recipe"."Edit" := FALSE;
END_IF;
IF "mAux_FP_M700_1" THEN
"HMI_Variables_Cmd"."Recipe"."Edit" := TRUE;
END_IF;
END_FUNCTION_BLOCK

View File

@ -1,170 +0,0 @@
# LAD-to-SCL Conversion Pipeline: Documentación de Referencia
## 1. Visión General
Este documento describe un pipeline de scripts de Python diseñado para convertir bloques de función o funciones (FC/FB) escritos en Ladder Logic (LAD) desde archivos XML de TIA Portal Openness a un código SCL (Structured Control Language) semánticamente equivalente.
El proceso se divide en tres etapas principales, cada una manejada por un script específico:
1. **XML a JSON Enriquecido (`x1_to_json.py`):** Parsea el XML de Openness, extrae la estructura lógica (incluyendo llamadas a FC/FB y temporizadores S5), conexiones explícitas e **infiere conexiones implícitas** (especialmente las habilitaciones EN) para crear un archivo JSON detallado. Mapea tipos de instrucción LAD/FBD (p.ej., `Se`, `NBox`) a nombres internos consistentes (p.ej., `TON_S5`, `N_TRIG`).
2. **Procesamiento Semántico (`x2_process.py`):** Lee el JSON enriquecido y, de forma iterativa, traduce cada instrucción (usando los tipos mapeados) a su equivalente SCL, manejando dependencias, propagando el estado lógico (RLO), traduciendo temporizadores S5 a IEC, generando lógica de flancos y agrupando lógica paralela bajo bloques `IF`. El SCL generado se almacena *dentro* del propio JSON.
3. **Generación de SCL Final (`x3_generate_scl.py`):** Lee el JSON completamente procesado y ensambla el código SCL final en un archivo `.scl` formateado, incluyendo declaraciones de variables (Input, Output, InOut, Temp, Stat - incluyendo instancias de temporizadores y bits de memoria de flancos) y el cuerpo del programa (`FUNCTION` o `FUNCTION_BLOCK`).
## 2. Etapas del Pipeline
### Etapa 1: XML a JSON Enriquecido (`x1_to_json.py`)
* **Propósito:** Transformar la compleja y a veces ambigua estructura XML de Openness en un formato JSON estructurado y más fácil de procesar, añadiendo información clave que está implícita en el LAD visual pero no siempre explícita en el XML.
* **Entrada:** Archivo `.xml` exportado desde TIA Portal Openness para un FC o FB.
* **Salida:** Archivo `_simplified.json`.
* **Proceso Clave:**
1. **Parseo XML:** Utiliza `lxml` para leer el archivo XML.
2. **Extracción de Metadatos:** Obtiene nombre del bloque, número, lenguaje original, comentario del bloque. Detecta si es `SW.Blocks.FC` o `SW.Blocks.FB`.
3. **Extracción de Interfaz:** Parsea las secciones `Input`, `Output`, `InOut`, `Temp`, `Constant`, `Return` para obtener la declaración de variables.
4. **Parseo de Redes (`CompileUnit`):** Itera sobre cada red lógica.
* **`parse_network`:**
* **Parseo de Componentes:**
* `Access`: Identifica variables globales/locales, constantes literales y tipadas (`parse_access`). Utiliza `get_symbol_name` para formatear nombres simbólicos con comillas (`"DB"."Var"`).
* `Part`: Identifica instrucciones estándar LAD/FBD (`parse_part`). **Importante:** Detecta pines negados (`<Negated>`) y los almacena en `negated_pins`. **Mapea** nombres XML (`Se`, `Sd`, `PBox`, `NBox`, `RCoil`, `SCoil`, `SdCoil`) a tipos internos (`TON_S5`, `TONR_S5`, `P_TRIG`, `N_TRIG`, `R`, `S`, `SR`).
* `Call`: Identifica llamadas a otros FCs o FBs (`parse_call`), extrayendo el nombre del bloque llamado, tipo (FC/FB) e información de instancia DB (`instance_db`) si aplica (formateado con comillas).
* Crea `access_map` y `parts_and_calls_map` para referencia rápida por UID.
* **Parseo de Conexiones (`Wire`):**
* Construye `wire_connections`: Un mapa `(dest_uid, dest_pin) -> [(src_uid, src_pin), ...]`.
* Construye `source_connections`: Un mapa `(src_uid, src_pin) -> [(dest_uid, dest_pin), ...]`.
* **Construcción Lógica Inicial:** Crea una lista de diccionarios (`all_logic_steps`), uno por cada `Part` o `Call`, rellenando `inputs` y `outputs` **solo con las conexiones explícitas** encontradas en los `Wire`.
* **Inferencia de Conexión `EN` (¡Paso Crucial!):**
* Itera sobre los bloques funcionales (`Move`, `Add`, `Call`, `BLKMOV`, etc.) que *no* tienen una entrada `en` explícita definida después del paso anterior.
* Utiliza una **heurística de búsqueda lineal hacia atrás** para encontrar la fuente de RLO más probable que precede a este bloque (la salida `out` de un bloque lógico como `Contact`/`O`/`Eq`/`P_TRIG`/`N_TRIG` o la salida `eno` de un bloque funcional anterior).
* Si se encuentra una fuente inferida, **añade la conexión `en`** al diccionario `inputs` del bloque funcional actual. Esto enriquece el JSON con la dependencia lógica implícita.
* **Ordenamiento:** Ordena las instrucciones en la lista `logic` final (generalmente por UID).
5. **Escritura JSON:** Guarda la estructura de datos completa en el archivo `_simplified.json`.
### Etapa 2: Procesamiento Semántico (`x2_process.py`)
* **Propósito:** Traducir la lógica LAD/FBD (representada en el JSON enriquecido) a código SCL embebido, resolviendo dependencias entre instrucciones, generando lógica SCL equivalente (incluyendo manejo de flancos y temporizadores), y aplicando optimizaciones de agrupación `IF`.
* **Entrada:** Archivo `_simplified.json` (generado por la Etapa 1).
* **Salida:** Archivo `_simplified_processed.json`.
* **Proceso Clave:**
1. **Carga de JSON y Preparación:** Lee el JSON de entrada y reconstruye mapas de acceso por red. Inicializa el `scl_map` global (o por red).
2. **Bucle Iterativo:** Repite los siguientes pasos hasta que no se realicen cambios en un pase completo o se alcance un límite máximo de pases (`max_passes`).
* **Fase 1: Procesadores Base:**
* Itera sobre cada instrucción en cada red.
* Si la instrucción no ha sido procesada (`_scl` o `_error`) ni agrupada (`grouped`), busca el procesador adecuado (`process_xxx`) basado en su `type` (usando los tipos mapeados como `TON_S5`, `P_TRIG`, etc.).
* **`process_xxx` (Ejecución):**
* Llama a `get_scl_representation` para obtener el SCL de sus pines de entrada, buscándolos en `scl_map` o directamente en `access_map`. `get_scl_representation` ahora **convierte constantes S5T# a T#**.
* Si alguna dependencia no está resuelta (devuelve `None`), el procesador retorna `False`.
* Si las dependencias están resueltas:
* **Generadores RLO (`Contact`, `O`, `Eq`, `P_TRIG`, `N_TRIG`):** Calculan la expresión booleana SCL resultante y la almacenan en `scl_map` bajo la clave `(network_id, instr_uid, 'out')`. `P_TRIG`/`N_TRIG` generan lógica explícita de flancos y la llamada para actualizar el bit de memoria (`stat_... := CLK;`). Guardan comentarios/lógica en `instruction['scl']`.
* **Bloques Funcionales (`Move`, `Add`, `Convert`, `Mod`, `BLKMOV`, `Call`):**
* Obtienen la condición `EN` (explícita o inferida).
* Generan el código SCL *core* (la asignación, cálculo o llamada). `process_call` ahora usa correctamente `instance_db` para FBs. `process_blkmov` traduce a `DST := SRC;` (con advertencia sobre tipos).
* Generan el SCL final, **envolviendo el core en `IF en_scl THEN ... END_IF;`** si `en_scl` no es `"TRUE"`.
* Almacenan el SCL final en `instruction['scl']`.
* Almacenan el nombre de la variable de salida/temporal (prefijado con `#` si es temporal) en `scl_map` para `out`/`out1`/`RET_VAL`.
* Almacenan el `en_scl` en `scl_map` para `eno`.
* **Bobinas (`Coil`, `R`, `S`, `SR`):** Obtienen el RLO de entrada (`in`, o `S`/`R1` para `SR`), obtienen el operando destino, generan la asignación (`:= TRUE`/`:= FALSE`) o lógica `IF/ELSIF` envuelta en `IF RLO THEN ...` si aplica, y la guardan en `instruction['scl']`.
* **Temporizadores (`TON_S5`, `TONR_S5`):** Generan una llamada a un bloque IEC (`TON`/`TONR`) usando un nombre de instancia (`stat_timer_...`). Parsean el valor `PT` (T#...). Mapean `Q` y `ET` a la instancia (`Instance.Q`, `Instance.ET`) en `scl_map`. Almacenan la llamada en `instruction['scl']`.
* Marcan la instrucción como procesada añadiendo `_scl` a `instruction['type']`.
* Retornan `True`.
* Se registra si hubo algún cambio en esta fase (`made_change_in_base_pass`).
* **Fase 2: Agrupación de IFs (`process_group_ifs`):**
* Itera sobre las instrucciones *ya procesadas* (`_scl`) que son generadoras de condición (`Contact`, `O`, `Eq`, `P_TRIG`, `N_TRIG`, etc.).
* Obtiene la `condition_scl` de `scl_map`.
* Busca todos los bloques funcionales, bobinas o temporizadores (`Move_scl`, `Add_scl`, `Coil_scl`, `TON_S5_scl`, etc.) cuyo pin de habilitación (`en`, `in`, `s`) esté conectado a la salida `out` de esta instrucción generadora.
* Si encuentra **más de uno**:
* Extrae el código *core* (lo que está dentro del `IF...END_IF;` si existe, o el código completo si no) de cada consumidor.
* Construye un **único bloque `IF condition_scl THEN ... END_IF;`** que contiene todos los cores extraídos, indentados.
* **Sobrescribe** el campo `scl` de la instrucción *generadora de condición* con este nuevo bloque `IF` agrupado.
* Marca cada instrucción consumidora con `grouped = True` y cambia su `scl` a un comentario (`GROUPED_COMMENT`) para evitar que `x3_generate_scl.py` lo use.
* Se registra si hubo algún cambio en esta fase (`made_change_in_group_pass`).
* **Condición de Salida:** El bucle termina si `made_change_in_base_pass` y `made_change_in_group_pass` son ambos `False`.
3. **Verificación Final:** Comprueba si quedaron instrucciones sin procesar, sin agrupar y sin errores, e informa al usuario.
4. **Escritura JSON:** Guarda el JSON modificado (con SCL embebido y marcas de agrupación) en el archivo `_simplified_processed.json`.
### Etapa 3: Generación de SCL Final (`x3_generate_scl.py`)
* **Propósito:** Ensamblar un archivo `.scl` completo y formateado a partir del JSON procesado.
* **Entrada:** Archivo `_simplified_processed.json` (generado por la Etapa 2).
* **Salida:** Archivo `.scl`.
* **Proceso Clave:**
1. **Carga de JSON:** Lee el archivo JSON procesado.
2. **Detección de Variables y Tipo de Bloque:**
* Escanea el SCL generado en busca de variables `#_temp_...` y `stat_...`.
* Identifica los tipos de las variables `stat_...` (Bool, TON, TONR) según sus nombres (`stat_nbox_mem...`, `stat_timer_Se...`, etc.).
* Determina si el bloque debe ser `FUNCTION_BLOCK` (si hay variables `STAT` o `TEMP`) o `FUNCTION`.
3. **Generación de Cabecera:** Escribe el encabezado del bloque (`FUNCTION_BLOCK name` o `FUNCTION name`, `VERSION`, etc.). Utiliza `format_variable_name` (la versión corregida) para el nombre del bloque.
4. **Generación de Declaraciones VAR:**
* Escribe las secciones `VAR_INPUT`, `VAR_OUTPUT`, `VAR_IN_OUT` usando `format_variable_name` para los nombres de las variables de la interfaz.
* **Escribe `VAR_STAT`:** Declara las variables `stat_...` detectadas con sus tipos inferidos (Bool, TON, TONR) y nombres entre comillas.
* **Escribe `VAR_TEMP`:** Declara las variables `#_temp_...` detectadas (declaradas como `"_temp_..."` sin el `#` pero con comillas) y las variables de la sección `Temp` de la interfaz. Utiliza inferencia de tipo básica para las variables `#_temp_...`.
5. **Generación del Cuerpo (`BEGIN`/`END_FUNCTION_BLOCK` o `END_FUNCTION`):**
* Itera sobre las `networks` en el JSON.
* Añade comentarios de red.
* Itera sobre la `logic` de cada red.
* Para cada `instruction`:
* **Verifica el flag `grouped`:** Si `instruction.get('grouped', False)` es `True`, **ignora** esta instrucción.
* Si no está agrupada, obtiene el valor del campo `scl`.
* **Limpia comentarios internos:** Elimina comentarios informativos específicos (`// RLO:`, `// Comparison:`, `// Logic O:`, `// N/P_TRIG Output Logic:`) si son la única parte de la línea, pero conserva los comentarios de actualización de memoria de flancos, errores y agrupación.
* Indenta y añade las líneas del SCL resultante al output.
* Añade líneas en blanco entre redes si contienen código.
6. **Escritura de Archivo:** Escribe el string SCL completo al archivo `.scl`.
## 3. Cómo Extender para Nuevas Instrucciones LAD/FBD
Añadir soporte para un nuevo tipo de instrucción (p.ej., un comparador `GT`, una función matemática `SQRT`, o un temporizador IEC `TP`) requiere modificar los scripts `x1_to_json.py` y `x2_process.py`.
**Pasos:**
1. **Analizar el XML:** Exporta un bloque simple que use la nueva instrucción y examina el XML de Openness. Identifica:
* Si se representa como `<Part Name="NombreInstruccion">` o `<Call Name="NombreInstruccion">`.
* Sus pines de entrada y salida (`NameCon`/`IdentCon` en los `Wire`).
* Cualquier atributo o `TemplateValue` relevante.
* Si tiene pines negados (`<Negated>`).
2. **Modificar `x1_to_json.py` (`parse_part` o `parse_call` y `parse_network`):**
* **Parseo:** Asegúrate de que `parse_part` o `parse_call` capture correctamente la nueva instrucción.
* **Mapeo de Tipo:** Si el nombre XML no es ideal (como `Se`), mapéalo a un nombre interno consistente en `parse_part` (p.ej., si fuera un temporizador IEC TP, podrías mapear `TPartName` -> `TP_IEC`).
* **Clasificación:** Decide si la nueva instrucción es un `functional_block_type` (necesita inferencia EN?) o un `rlo_generator`. Actualiza estas listas en `parse_network` si es necesario.
* **Inferencia EN:** Revisa si la lógica de inferencia EN en `parse_network` necesita ajustes.
* **Pines:** Asegúrate de que sus pines de entrada/salida esperados estén en `possible_input_pins` / `possible_output_pins` en `parse_network`.
3. **Modificar `x2_process.py` (continuación):**
* **Lógica SCL (continuación):**
* ...
* Almacena el SCL final en `instruction['scl']`.
* Actualiza `instruction['type']` con el sufijo `_scl`.
* **Actualiza `scl_map`:** Añade entradas para los pines de salida (`out`, `Q`, etc.) con su representación SCL (puede ser un nombre de variable temporal prefijado con `#`, el resultado de una expresión, o el acceso a un miembro de instancia como `"Instance".Q`). Añade la entrada para `eno` si el bloque lo tiene (generalmente `scl_map[key_eno] = en_scl`).
* Retorna `True`.
* **Añadir a la Lista:** Inserta la nueva función `process_nombre_instruccion` en la lista `base_processors_list` en el orden de prioridad correcto (generalmente, generadores de valores/condiciones antes que consumidores, y las llamadas (`process_call`) al final o cerca del final). Actualiza el `processor_map` si es necesario (especialmente si manejas tipos como `Call_FC`, `Call_FB`).
* **Agrupación:** Considera si este nuevo bloque debería ser parte de la lógica de agrupación (¿es un bloque funcional, bobina o temporizador que puede ser habilitado en paralelo?). Si es así, añádelo a la lista `groupable_types_original` en `process_group_ifs`. El código de agrupación existente debería funcionar si el procesador del nuevo bloque genera correctamente la estructura `IF EN THEN ... END_IF;` (o código simple si EN=TRUE).
4. **Modificar `x3_generate_scl.py`:**
* **Declaraciones STAT:** Si la nueva instrucción introduce la necesidad de un nuevo tipo de variable estática (p.ej., un tipo de datos específico para un contador, o un nuevo tipo de instancia de FB IEC), necesitarás:
* Añadir una nueva expresión regular (`stat_pattern_xxx`) para detectar el nombre de la instancia/variable estática generada por tu nuevo procesador en `x2_process.py`.
* Actualizar el bucle de detección para que use esta nueva regex y almacene el nombre y el tipo SCL correcto (`MyCounterType`, `IEC_Counter`, etc.) en el diccionario `stat_vars`.
* La lógica existente en `generate_scl` que escribe la sección `VAR_STAT` usará esta información para declarar la variable correctamente.
* **Declaraciones TEMP:** Si la nueva instrucción genera variables temporales con un patrón específico o requiere un tipo de dato específico que pueda ser inferido, puedes mejorar la lógica de inferencia de tipo en la sección `VAR_TEMP`.
* **Limpieza de Comentarios:** Si el nuevo procesador genera comentarios internos específicos que no quieres en el SCL final, ajusta la lógica de filtrado en la sección de generación del cuerpo del bloque.
5. **Probar:**
* Crea un archivo XML de prueba simple que use la nueva instrucción en diferentes contextos (con entradas/salidas conectadas, con EN explícito/implícito, negaciones si aplica).
* Ejecuta el pipeline completo (`x1_to_json.py`, `x2_process.py`, `x3_generate_scl.py`).
* **Verifica `_simplified.json`:** Asegúrate de que `x1` parseó correctamente la instrucción, mapeó su tipo, identificó sus conexiones y realizó la inferencia EN si era necesario.
* **Verifica `_simplified_processed.json`:** Comprueba que `x2` ejecutó tu nuevo procesador, generó el SCL esperado en el campo `scl`, marcó el tipo con `_scl`, y actualizó el `scl_map` correctamente para sus salidas. Verifica si la agrupación `IF` funcionó como se esperaba si la instrucción era parte de lógica paralela.
* **Verifica el archivo `.scl`:** Confirma que `x3` generó el SCL final correctamente, incluyendo las declaraciones necesarias (STAT/TEMP) y el código SCL de la instrucción (indentado y sin comentarios no deseados). Asegúrate de que no haya errores de sintaxis SCL obvios.
* **Importar en TIA Portal (Opcional pero Recomendado):** Intenta importar el archivo SCL generado en un proyecto de TIA Portal para validar la sintaxis y la estructura del bloque.
## 4. Futuras Mejoras y Consideraciones
* **Manejo de Tipos de Datos:** Implementar un seguimiento y conversión de tipos más robusto. Inferir tipos para variables temporales de forma más precisa. Usar funciones de conversión SCL explícitas (`INT_TO_DINT`, etc.) donde sea necesario, posiblemente requiriendo información de tipo adicional en el JSON.
* **Lógica de Flancos/Temporizadores:** Asegurar que la traducción de temporizadores S5 y la lógica de flancos generada sea completamente compatible con los bloques IEC estándar (`TON`, `TOF`, `TP`, `TONR`, `R_TRIG`, `F_TRIG`). Considerar la necesidad de declarar instancias de `R_TRIG`/`F_TRIG` en `VAR_STAT` en lugar de generar lógica explícita.
* **Soporte para FBs:** Mejorar el manejo de parámetros InOut y Return para llamadas a FC/FB. Potencialmente, requerir información de la interfaz del bloque llamado (parseando su propio XML o desde una biblioteca) para generar llamadas SCL más precisas.
* **Optimización SCL:** Explorar más optimizaciones SCL más allá de la agrupación de IFs (p.ej., simplificación de expresiones booleanas complejas, propagación de constantes).
* **Estructuras LAD Complejas:** La inferencia de EN actual (búsqueda lineal hacia atrás) es simple. Para manejar bifurcaciones (`Branch`), uniones (`Merge`) y saltos (`JMP`) complejos de forma robusta, `x1_to_json.py` necesitaría realizar un análisis de flujo de datos/control más sofisticado para determinar las dependencias lógicas correctas antes de generar el JSON.
* **Manejo de Errores:** Mejorar el reporte de errores con más contexto (nombre de red, UID, tipo de instrucción). Añadir más validaciones en cada etapa.
* **Interfaz Gráfica/Configuración:** Crear una interfaz más amigable o archivos de configuración para gestionar el proceso, seleccionar archivos y configurar opciones (p.ej., idioma por defecto, nivel de log).
* **Soporte para otros lenguajes (FBD/STL):** Extender el parser `x1_to_json.py` y los procesadores en `x2_process.py` para manejar otros lenguajes de origen, lo cual requeriría entender sus respectivas representaciones XML en Openness.
## 5. Conclusión
Este pipeline proporciona una base funcional para la conversión automática de LAD a SCL desde archivos TIA Portal Openness XML. La clave de su funcionamiento es la **separación de responsabilidades**: `x1` enriquece el modelo de datos con información implícita, `x2` realiza la traducción semántica iterativa y la optimización de agrupación, y `x3` ensambla el archivo SCL final. Al añadir procesadores específicos para cada tipo de instrucción LAD/FBD y refinar la lógica de inferencia y generación, la cobertura y calidad de la conversión pueden ser extendidas significativamente. La estructura modular facilita la incorporación de soporte para nuevas instrucciones y futuras mejoras.

View File

@ -1,687 +0,0 @@
# -*- coding: utf-8 -*-
import json
import os
from lxml import etree
import traceback
from collections import defaultdict
# --- Namespaces ---
ns = {
"iface": "http://www.siemens.com/automation/Openness/SW/Interface/v5",
"flg": "http://www.siemens.com/automation/Openness/SW/NetworkSource/FlgNet/v4",
}
# --- Helper Functions ---
# get_multilingual_text, get_symbol_name, parse_access - No changes needed from previous corrected version
def get_multilingual_text(element, default_lang="en-US", fallback_lang="it-IT"):
if element is None:
return ""
try:
# Try default language first
xpath_expr_default = (
f".//iface:MultilingualTextItem[iface:Culture='{default_lang}']/iface:Text"
)
text_items = element.xpath(xpath_expr_default, namespaces=ns)
if text_items and text_items[0].text is not None:
return text_items[0].text.strip()
# Try fallback language
xpath_expr_fallback = (
f".//iface:MultilingualTextItem[iface:Culture='{fallback_lang}']/iface:Text"
)
text_items = element.xpath(xpath_expr_fallback, namespaces=ns)
if text_items and text_items[0].text is not None:
return text_items[0].text.strip()
# Try any language if specific ones fail
xpath_expr_any = ".//iface:MultilingualTextItem/iface:Text"
text_items = element.xpath(xpath_expr_any, namespaces=ns)
if text_items and text_items[0].text is not None:
return text_items[0].text.strip()
return "" # No text found
except Exception as e:
# print(f"Advertencia: Error extrayendo MultilingualText: {e}") # Reduced verbosity
return ""
def get_symbol_name(symbol_element):
"""Extracts the full symbolic name, adding quotes around each component."""
if symbol_element is None:
return None
try:
# Namespace might be missing on Component, use local-name()
components = symbol_element.xpath("./*[local-name()='Component']/@Name")
# Ensure quotes are added correctly
return ".".join(f'"{c}"' for c in components) if components else None
except Exception as e:
print(f"Advertencia: Excepción en get_symbol_name: {e}")
return None
def parse_access(access_element):
"""Parses Access elements (variables, constants)."""
if access_element is None:
return None
uid = access_element.get("UId")
scope = access_element.get(
"Scope"
) # GlobalVariable, LocalVariable, LiteralConstant, TypedConstant etc.
info = {"uid": uid, "scope": scope, "type": "unknown_access"} # Default type
symbol = access_element.xpath("./*[local-name()='Symbol']")
constant = access_element.xpath("./*[local-name()='Constant']")
# Add check for ConstantValue tag directly under Access (sometimes happens for literals)
const_val_direct = access_element.xpath("./*[local-name()='ConstantValue']/text()")
if symbol:
info["type"] = "variable"
info["name"] = get_symbol_name(symbol[0])
if info["name"] is None:
info["type"] = "error_parsing_symbol"
print(f"Error: No se pudo parsear nombre símbolo Access UID={uid}")
elif constant:
info["type"] = "constant"
const_type_elem = constant[0].xpath("./*[local-name()='ConstantType']")
const_val_elem = constant[0].xpath("./*[local-name()='ConstantValue']")
info["datatype"] = (
const_type_elem[0].text.strip()
if const_type_elem and const_type_elem[0].text
else "Unknown"
)
info["value"] = (
const_val_elem[0].text.strip()
if const_val_elem and const_val_elem[0].text
else None
)
if info["value"] is None:
info["type"] = "error_parsing_constant"
print(f"Error: Constante sin valor Access UID={uid}")
# Handle S5Time specifically - store its original format
elif info["datatype"] == "Unknown" and scope == "TypedConstant":
if info["value"].upper().startswith("S5T#"):
info["datatype"] = "S5Time" # Mark as S5Time, value remains S5T#...
# Add other typed constant checks if necessary (e.g., C#, P#)
elif const_val_direct and scope == "LiteralConstant":
info["type"] = "constant"
info["value"] = const_val_direct[0].strip()
# Infer datatype for literals
val_lower = info["value"].lower()
if val_lower in ["true", "false"]:
info["datatype"] = "Bool"
elif info["value"].isdigit() or (
info["value"].startswith("-") and info["value"][1:].isdigit()
):
info["datatype"] = "Int" # Could be DInt etc, Int is safe default
elif "." in info["value"] or "e" in val_lower:
try:
float(info["value"])
info["datatype"] = "Real" # Could be LReal
except ValueError:
info["datatype"] = "String" # If float conversion fails
else:
info["datatype"] = "String" # Default literal type
# If still unknown, log warning
if info["type"] == "unknown_access":
# Don't warn for Constant scope as it might be handled later
if scope != "Constant":
print(
f"Advertencia: Access UID={uid} scope={scope} no es Symbol ni Constant reconocible."
)
# Ensure variable has a name
if info["type"] == "variable" and not info.get("name"):
print(f"Error Interno: parse_access var sin nombre UID {uid}.")
info["type"] = "error_no_name"
return info
def parse_part(part_element):
"""Parses Part elements (standard instructions), extracting UID, name, template values, and negated pins."""
if part_element is None:
return None
uid = part_element.get("UId")
name_orig = part_element.get("Name") # Instruction type (e.g., Contact, Coil, Move)
if not uid or not name_orig:
print(
f"Error: Part sin UID o Name: {etree.tostring(part_element, encoding='unicode')}"
)
return None
template_values = {}
try:
for tv in part_element.xpath("./*[local-name()='TemplateValue']"):
tv_name = tv.get("Name")
tv_type = tv.get("Type")
if tv_name and tv_type:
template_values[tv_name] = tv_type
except Exception as e:
print(f"Advertencia: Error extrayendo TemplateValues Part UID={uid}: {e}")
negated_pins = {}
try:
for negated_elem in part_element.xpath("./*[local-name()='Negated']"):
negated_pin_name = negated_elem.get("Name")
if negated_pin_name:
negated_pins[negated_pin_name] = True
except Exception as e:
print(f"Advertencia: Error extrayendo Negated Pins Part UID={uid}: {e}")
version = part_element.get("Version")
# Map XML names to internal types used by x2_process
name_mapped = name_orig
if name_orig == "Se":
name_mapped = "TON_S5"
elif name_orig == "Sd":
name_mapped = "TONR_S5"
elif name_orig == "PBox":
name_mapped = "P_TRIG"
elif name_orig == "NBox":
name_mapped = "N_TRIG"
elif name_orig == "RCoil":
name_mapped = "R"
elif name_orig == "SCoil":
name_mapped = "S"
elif name_orig == "SdCoil":
name_mapped = "SR" # Map S5 Set-Dominant to SR internal type
elif name_orig == "BLKMOV":
name_mapped = "BLKMOV" # Keep as is
# Add other mappings if necessary (e.g., RsCoil -> RS)
part_data = {
"uid": uid,
"type": name_mapped, # Use the mapped type
"original_type": name_orig, # Store original name for reference if needed
"template_values": template_values,
"negated_pins": negated_pins,
}
if version:
part_data["version"] = version
return part_data
# parse_call - No changes needed from previous corrected version
def parse_call(call_element):
"""Parses Call elements (FC/FB calls)."""
if call_element is None:
return None
uid = call_element.get("UId")
if not uid:
print(
f"Error: Call encontrado sin UID: {etree.tostring(call_element, encoding='unicode')}"
)
return None
# Use local-name() for CallInfo
call_info_elem = call_element.xpath("./*[local-name()='CallInfo']")
if not call_info_elem:
print(f"Error: Call UID {uid} sin elemento CallInfo.")
return None
call_info = call_info_elem[0]
block_name = call_info.get("Name")
block_type = call_info.get("BlockType") # FC, FB
if not block_name or not block_type:
print(f"Error: CallInfo para UID {uid} sin Name o BlockType.")
return None
call_data = {
"uid": uid,
"type": "Call", # Generic type for our JSON
"block_name": block_name,
"block_type": block_type,
"template_values": {}, # Add fields for consistency with parse_part
"negated_pins": {},
}
# Instance info for FBs
instance_name = None
if block_type == "FB":
# Use local-name() for Instance and Symbol
instance_elem = call_info.xpath("./*[local-name()='Instance']")
if instance_elem:
symbol_elem = instance_elem[0].xpath("./*[local-name()='Symbol']")
if symbol_elem:
instance_name = get_symbol_name(symbol_elem[0])
if instance_name:
call_data["instance_db"] = (
instance_name # Store the formatted name directly
)
return call_data
# --- Function parse_network (Main logic per network) ---
def parse_network(network_element):
if network_element is None:
return {
"id": "ERROR",
"title": "Invalid Network Element",
"logic": [],
"error": "Input element was None",
}
network_id = network_element.get("ID")
title_node = network_element.xpath(
".//*[local-name()='MultilingualText'][@CompositionName='Title']"
)
network_title = (
get_multilingual_text(title_node[0]) if title_node else f"Network {network_id}"
)
comment_node = network_element.xpath(
".//*[local-name()='MultilingualText'][@CompositionName='Comment']"
)
network_comment = get_multilingual_text(comment_node[0]) if comment_node else ""
flgnet_list = network_element.xpath(".//flg:FlgNet", namespaces=ns)
if not flgnet_list:
return {
"id": network_id,
"title": network_title,
"comment": network_comment,
"logic": [],
"error": "FlgNet not found",
}
flgnet = flgnet_list[0]
# 1. Parse Access, Parts, and Calls
access_map = {}
for acc in flgnet.xpath(".//flg:Access", namespaces=ns):
if acc_info := parse_access(acc):
access_map[acc_info["uid"]] = acc_info
parts_and_calls_map = {}
instruction_elements = flgnet.xpath(".//flg:Part | .//flg:Call", namespaces=ns)
for element in instruction_elements:
parsed_info = None
if element.tag == etree.QName(ns["flg"], "Part"):
parsed_info = parse_part(element)
elif element.tag == etree.QName(ns["flg"], "Call"):
parsed_info = parse_call(element)
if parsed_info and "uid" in parsed_info:
parts_and_calls_map[parsed_info["uid"]] = parsed_info
# 2. Parse Wires
wire_connections = defaultdict(list)
source_connections = defaultdict(list)
flg_ns_uri = ns["flg"]
for wire in flgnet.xpath(".//flg:Wire", namespaces=ns):
source_uid, source_pin, dest_uid, dest_pin = None, None, None, None
source_elem = wire.xpath("./*[1]")[0]
dest_elem = wire.xpath("./*[2]")[0]
if source_elem.tag == etree.QName(flg_ns_uri, "Powerrail"):
source_uid, source_pin = "POWERRAIL", "out"
elif source_elem.tag == etree.QName(flg_ns_uri, "IdentCon"):
source_uid, source_pin = source_elem.get("UId"), "value"
elif source_elem.tag == etree.QName(flg_ns_uri, "NameCon"):
source_uid, source_pin = source_elem.get("UId"), source_elem.get("Name")
if dest_elem.tag == etree.QName(flg_ns_uri, "IdentCon"):
dest_uid, dest_pin = dest_elem.get("UId"), "value"
elif dest_elem.tag == etree.QName(flg_ns_uri, "NameCon"):
dest_uid, dest_pin = dest_elem.get("UId"), dest_elem.get("Name")
elif dest_elem.tag == etree.QName(flg_ns_uri, "OpenCon"):
dest_uid, dest_pin = "OPEN", "in"
if dest_uid and dest_pin and source_uid is not None and source_pin is not None:
if dest_uid != "OPEN":
dest_key = (dest_uid, dest_pin)
source_info = (source_uid, source_pin)
if source_info not in wire_connections[dest_key]:
wire_connections[dest_key].append(source_info)
source_key = (source_uid, source_pin)
dest_info = (dest_uid, dest_pin)
if dest_info not in source_connections[source_key]:
source_connections[source_key].append(dest_info)
# 3. Build Initial Logic Representation
all_logic_steps = {}
for instr_uid, instr_info in parts_and_calls_map.items():
instruction_repr = {
"instruction_uid": instr_uid,
**instr_info,
"inputs": {},
"outputs": {},
}
# *** ADD DSTBLK to possible inputs ***
possible_input_pins = {
"en",
"in",
"in1",
"in2",
"in3",
"in4",
"operand",
"bit",
"pre",
"clk",
"s",
"tv",
"r",
"S",
"R1",
"SRCBLK",
"DSTBLK",
}
for dest_pin_name in possible_input_pins:
dest_key = (instr_uid, dest_pin_name)
if dest_key in wire_connections:
sources_list = wire_connections[dest_key]
input_sources_repr = []
for source_uid, source_pin in sources_list:
if source_uid == "POWERRAIL":
input_sources_repr.append({"type": "powerrail"})
elif source_uid in access_map:
input_sources_repr.append(access_map[source_uid])
elif source_uid in parts_and_calls_map:
input_sources_repr.append(
{
"type": "connection",
"source_instruction_type": parts_and_calls_map[
source_uid
]["type"],
"source_instruction_uid": source_uid,
"source_pin": source_pin,
}
)
else:
input_sources_repr.append(
{"type": "unknown_source", "uid": source_uid}
)
if len(input_sources_repr) == 1:
instruction_repr["inputs"][dest_pin_name] = input_sources_repr[0]
elif len(input_sources_repr) > 1:
instruction_repr["inputs"][dest_pin_name] = input_sources_repr
possible_output_pins = {"out", "out1", "Q", "eno", "RET_VAL", "q", "et"}
for src_pin_name in possible_output_pins:
source_key = (instr_uid, src_pin_name)
if source_key in source_connections:
dest_access_list = []
for dest_uid, dest_pin in source_connections[source_key]:
if dest_uid in access_map:
if access_map[dest_uid] not in dest_access_list:
dest_access_list.append(access_map[dest_uid])
if dest_access_list:
instruction_repr["outputs"][src_pin_name] = dest_access_list
all_logic_steps[instr_uid] = instruction_repr
# 4. EN Connection Inference
functional_block_types = {
"Move",
"Add",
"Sub",
"Mul",
"Div",
"Mod",
"Convert",
"Call",
"BLKMOV",
}
# Use MAPPED types for RLO generators
rlo_generators = {
"Contact",
"O",
"Eq",
"Ne",
"Gt",
"Lt",
"Ge",
"Le",
"And",
"Xor",
"P_TRIG",
"N_TRIG",
}
try:
sorted_uids = sorted(all_logic_steps.keys(), key=lambda x: int(x))
except ValueError:
sorted_uids = sorted(all_logic_steps.keys())
processed_for_en_inference = set()
current_logic_list_for_en = [all_logic_steps[uid] for uid in sorted_uids]
for i, instruction in enumerate(current_logic_list_for_en):
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"] # Use the mapped type
if (
instr_type in functional_block_types
and "en" not in instruction["inputs"]
and instr_uid not in processed_for_en_inference
):
inferred_en_source = None
if i > 0:
# Simple lookback to previous instruction
prev_instr = current_logic_list_for_en[i - 1]
prev_uid = prev_instr["instruction_uid"]
prev_type = prev_instr["type"]
# Check if previous instruction has a mappable 'out' or 'eno'
# We check source_connections map for actual wire existence
prev_has_out_wire = any(
dest[0] != "OPEN"
for dest in source_connections.get((prev_uid, "out"), [])
)
prev_has_eno_wire = any(
dest[0] != "OPEN"
for dest in source_connections.get((prev_uid, "eno"), [])
)
if prev_type in rlo_generators and prev_has_out_wire:
inferred_en_source = {
"type": "connection",
"source_instruction_uid": prev_uid,
"source_instruction_type": prev_type,
"source_pin": "out",
}
elif prev_type in functional_block_types and prev_has_eno_wire:
inferred_en_source = {
"type": "connection",
"source_instruction_uid": prev_uid,
"source_instruction_type": prev_type,
"source_pin": "eno",
}
if inferred_en_source:
all_logic_steps[instr_uid]["inputs"]["en"] = inferred_en_source
processed_for_en_inference.add(instr_uid)
# 5. Final Logic Ordering
network_logic = [all_logic_steps[uid] for uid in sorted_uids]
return {
"id": network_id,
"title": network_title,
"comment": network_comment,
"logic": network_logic,
}
# --- Main XML to JSON Conversion Function ---
# convert_xml_to_json - No significant changes needed from previous version
def convert_xml_to_json(xml_filepath, json_filepath):
print(f"Iniciando conversión de '{xml_filepath}' a '{json_filepath}'...")
if not os.path.exists(xml_filepath):
print(f"Error Crítico: Archivo XML no encontrado: '{xml_filepath}'")
return
try:
print("Paso 1: Parseando archivo XML...")
# Disable DTD loading for security and compatibility
parser = etree.XMLParser(
remove_blank_text=True, load_dtd=False, resolve_entities=False
)
tree = etree.parse(xml_filepath, parser)
root = tree.getroot()
print("Paso 1: Parseo XML completado.")
# Detect block type (FC or FB) - Look for SW.Blocks.FC or SW.Blocks.FB
block_node = None
block_xpath = ".//*[local-name()='SW.Blocks.FC' or local-name()='SW.Blocks.FB']"
block_list = root.xpath(block_xpath)
if not block_list:
print("Error Crítico: No se encontró <SW.Blocks.FC> o <SW.Blocks.FB>.")
return
block_node = block_list[0]
block_tag_name = etree.QName(
block_node.tag
).localname # SW.Blocks.FC or SW.Blocks.FB
print(
f"Paso 2: Bloque {block_tag_name} encontrado (ID={block_node.get('ID')})."
)
print("Paso 3: Extrayendo atributos del bloque...")
attribute_list_node = block_node.xpath("./*[local-name()='AttributeList']")
block_name_val, block_number_val, block_lang_val = "Unknown", None, "Unknown"
if attribute_list_node:
attr_list = attribute_list_node[0]
name_node = attr_list.xpath("./*[local-name()='Name']/text()")
block_name_val = name_node[0].strip() if name_node else block_name_val
num_node = attr_list.xpath("./*[local-name()='Number']/text()")
try:
block_number_val = int(num_node[0]) if num_node else None
except ValueError:
block_number_val = None # Handle non-integer Number
lang_node = attr_list.xpath(
"./*[local-name()='ProgrammingLanguage']/text()"
)
block_lang_val = lang_node[0].strip() if lang_node else block_lang_val
print(
f"Paso 3: Atributos: Nombre='{block_name_val}', Número={block_number_val}, Lenguaje='{block_lang_val}'"
)
else:
print("Advertencia: No se encontró AttributeList para el bloque.")
# Get block comment
block_comment_val = ""
comment_node_list = block_node.xpath(
"./*[local-name()='ObjectList']/*[local-name()='MultilingualText'][@CompositionName='Comment']"
)
if comment_node_list:
block_comment_val = get_multilingual_text(comment_node_list[0])
# Initialize result dictionary
result = {
"block_name": block_name_val,
"block_number": block_number_val,
"language": block_lang_val,
"block_comment": block_comment_val,
"interface": {},
"networks": [],
}
print("Paso 4: Extrayendo la interfaz del bloque...")
if attribute_list_node:
interface_node = attribute_list_node[0].xpath(
"./*[local-name()='Interface']"
)
if interface_node:
print("Paso 4: Nodo Interface encontrado.")
# Iterate through sections using the correct namespace prefix 'iface'
for section in interface_node[0].xpath(
".//iface:Section", namespaces=ns
):
section_name = section.get(
"Name"
) # Input, Output, InOut, Temp, Constant, Return
members = []
for member in section.xpath("./iface:Member", namespaces=ns):
member_name = member.get("Name")
member_dtype = member.get("Datatype")
if member_name and member_dtype:
member_info = {
"name": member_name,
"datatype": member_dtype,
}
members.append(member_info)
if members:
result["interface"][section_name] = members
if not result["interface"]:
print("Advertencia: Interface sin secciones iface:Section válidas.")
else:
print(
"Advertencia: No se encontró <Interface> DENTRO de <AttributeList>."
)
if not result["interface"]:
print("Advertencia: No se pudo extraer información de la interfaz.")
print("Paso 5: Extrayendo y PROCESANDO lógica de redes (CompileUnits)...")
networks_processed_count = 0
object_list_node = block_node.xpath("./*[local-name()='ObjectList']")
if object_list_node:
compile_units = object_list_node[0].xpath(
"./*[local-name()='SW.Blocks.CompileUnit']"
)
print(
f"Paso 5: Se encontraron {len(compile_units)} elementos SW.Blocks.CompileUnit."
)
for network_elem in compile_units:
networks_processed_count += 1
parsed_network = parse_network(network_elem)
if parsed_network and parsed_network.get("error") is None:
result["networks"].append(parsed_network)
elif parsed_network:
print(
f"Error: Falló parseo red ID={parsed_network.get('id')}: {parsed_network.get('error')}"
)
result["networks"].append(
parsed_network
) # Include network with error marker
else:
print(
f"Error Crítico: parse_network devolvió None para CompileUnit (ID={network_elem.get('ID')})."
)
if networks_processed_count == 0:
print("Advertencia: ObjectList sin SW.Blocks.CompileUnit.")
else:
print("Advertencia: No se encontró ObjectList.")
print("Paso 6: Escribiendo el resultado en el archivo JSON...")
if not result["interface"]:
print("ADVERTENCIA FINAL: 'interface' está vacía.")
if not result["networks"]:
print("ADVERTENCIA FINAL: 'networks' está vacía.")
try:
with open(json_filepath, "w", encoding="utf-8") as f:
json.dump(
result, f, indent=4, ensure_ascii=False
) # ensure_ascii=False is important
print(f"Paso 6: Escritura completada.")
print(f"Conversión finalizada. JSON guardado en: '{json_filepath}'")
except IOError as e:
print(
f"Error Crítico: No se pudo escribir JSON en '{json_filepath}'. Error: {e}"
)
except TypeError as e:
print(f"Error Crítico: Problema al serializar a JSON. Error: {e}")
except etree.XMLSyntaxError as e:
print(f"Error Crítico: Sintaxis XML en '{xml_filepath}'. Detalles: {e}")
except Exception as e:
print(f"Error Crítico: Error inesperado durante la conversión: {e}")
print("--- Traceback ---")
traceback.print_exc()
print("--- Fin Traceback ---")
# --- Punto de Entrada Principal ---
if __name__ == "__main__":
xml_file = "BlenderCtrl__Main.xml"
json_file = xml_file.replace(".xml", "_simplified.json")
convert_xml_to_json(xml_file, json_file)

File diff suppressed because it is too large Load Diff

View File

@ -1,218 +0,0 @@
# -*- coding: utf-8 -*-
import json
import os
import re
# --- Helper Functions ---
# Use the CORRECT version from x2_process.py
def format_variable_name(name):
"""Formats variable names for SCL, preserving quotes for structured names."""
if not name:
return "_INVALID_NAME_"
if name.startswith('"') and name.endswith('"'):
return name
prefix = ""
if name.startswith("#"):
prefix = "#"
name = name[1:]
if not name:
return "_INVALID_NAME_"
if not re.match(r"^[a-zA-Z_]", name[0]):
name = "_" + name
name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
return prefix + name
def generate_scl(processed_json_filepath, output_scl_filepath):
"""Genera un archivo SCL a partir del JSON procesado."""
if not os.path.exists(processed_json_filepath):
print(
f"Error: Archivo JSON procesado no encontrado en '{processed_json_filepath}'"
)
return
print(f"Cargando JSON procesado desde: {processed_json_filepath}")
try:
with open(processed_json_filepath, "r", encoding="utf-8") as f:
data = json.load(f)
except Exception as e:
print(f"Error al cargar JSON: {e}")
return
# --- Block Info ---
block_name_orig = data.get("block_name", "UnknownBlock")
block_number = data.get("block_number")
block_lang = data.get("language", "LAD")
block_comment = data.get("block_comment", "")
# --- Variable Detection ---
temp_vars_base = set() # Base names like _temp_...
stat_vars = {} # Quoted Name -> TYPE (Bool, TON, TONR)
temp_pattern = re.compile(r"#(_temp_[a-zA-Z0-9_]+)") # Capture base name after #
# Regex needs to capture the QUOTED name from SCL
stat_pattern_bool = re.compile(
r'("stat_(?:ptrig|ntrig|sr)_mem_[a-zA-Z0-9_]+")'
) # Edge/SR mem bits
stat_pattern_ton = re.compile(r'("stat_TON_[a-zA-Z0-9_]+")') # TON instances
stat_pattern_tonr = re.compile(r'("stat_TONR_[a-zA-Z0-9_]+")') # TONR instances
for network in data.get("networks", []):
for instruction in network.get("logic", []):
scl_code = instruction.get("scl", "")
if scl_code:
temp_vars_base.update(temp_pattern.findall(scl_code))
for name in stat_pattern_bool.findall(scl_code):
stat_vars[name] = "Bool"
for name in stat_pattern_ton.findall(scl_code):
stat_vars[name] = "TON"
for name in stat_pattern_tonr.findall(scl_code):
stat_vars[name] = "TONR"
has_stat = bool(stat_vars)
interface_temps_list = data.get("interface", {}).get("Temp", [])
has_temp = bool(temp_vars_base or interface_temps_list)
block_type_keyword = "FUNCTION_BLOCK" if has_stat or has_temp else "FUNCTION"
scl_block_name = format_variable_name(block_name_orig) # Format name correctly
print(f"Generando SCL para bloque: {scl_block_name} como {block_type_keyword}")
print(f"Variables temporales (#_temp_...) detectadas: {len(temp_vars_base)}")
print(f"Variables estáticas (stat_...) detectadas: {len(stat_vars)}")
# --- Build SCL Output ---
scl_output = []
scl_output.append(f"// Block Name (Original): {block_name_orig}")
if block_number:
scl_output.append(f"// Block Number: {block_number}")
scl_output.append(f"// Original Language: {block_lang}")
if block_comment:
scl_output.append(f"// Block Comment: {block_comment}")
scl_output.append("")
scl_output.append(f"{block_type_keyword} {scl_block_name}")
scl_output.append("{ S7_Optimized_Access := 'TRUE' }")
scl_output.append("VERSION : 0.1")
scl_output.append("")
# --- VAR Sections ---
def add_var_section(section_name, members_list):
if not members_list:
return
scl_output.append(f"VAR_{section_name}")
for member in members_list:
scl_name = format_variable_name(
member["name"]
) # Format interface var names
scl_output.append(f" {scl_name} : {member['datatype']};")
scl_output.append("END_VAR")
scl_output.append("")
interface_data = data.get("interface", {})
add_var_section("INPUT", interface_data.get("Input", []))
add_var_section("OUTPUT", interface_data.get("Output", []))
add_var_section("IN_OUT", interface_data.get("InOut", []))
if stat_vars:
scl_output.append("VAR_STAT")
for var_name_quoted in sorted(stat_vars.keys()):
var_type = stat_vars[var_name_quoted]
comment = (
f"// Instance for {var_type}"
if var_type in ["TON", "TONR"]
else "// Memory Bit"
)
scl_output.append(f" {var_name_quoted} : {var_type}; {comment}")
scl_output.append("END_VAR")
scl_output.append("")
declared_temps_formatted = set()
temp_declarations = []
if interface_temps_list:
for var in interface_temps_list:
scl_name = format_variable_name(var["name"])
temp_declarations.append(
f" {scl_name} : {var['datatype']}; // From Interface"
)
declared_temps_formatted.add(scl_name)
if temp_vars_base:
for base_name in sorted(list(temp_vars_base)):
# Declare using the base name, quoted
scl_name_declare = format_variable_name(f'"{base_name}"')
if scl_name_declare not in declared_temps_formatted:
# Simple inference based on common pin names in the base name
inferred_type = "Bool" # Default
if "ret_val" in base_name:
inferred_type = "Int"
elif "_et" in base_name:
inferred_type = "Time"
temp_declarations.append(
f" {scl_name_declare} : {inferred_type}; // Auto-generated temporary"
)
declared_temps_formatted.add(scl_name_declare)
if temp_declarations:
scl_output.append("VAR_TEMP")
scl_output.extend(temp_declarations)
scl_output.append("END_VAR")
scl_output.append("")
# --- Block Body ---
scl_output.append("BEGIN")
scl_output.append("")
for i, network in enumerate(data.get("networks", [])):
network_title = network.get("title", f'Network {network.get("id")}')
network_comment = network.get("comment", "")
scl_output.append(f" // Network {i+1}: {network_title}")
if network_comment:
for line in network_comment.splitlines():
scl_output.append(f" // {line}")
scl_output.append("")
network_has_code = False
for instruction in network.get("logic", []):
if instruction.get("grouped", False):
continue
scl_code = instruction.get("scl")
if scl_code:
lines_to_add = []
for line in scl_code.splitlines():
line_strip = line.strip()
is_simple_info_comment = line_strip.startswith(
("// RLO:", "// Comparison Eq", "// Logic O")
)
# Keep essential comments (Errors, Grouping, Memory Updates) and actual SCL
if (
not is_simple_info_comment
or line_strip.startswith("// ERROR")
or line_strip.startswith(GROUPED_COMMENT)
or "Edge Memory Update" in line_strip
):
lines_to_add.append(line)
if lines_to_add:
network_has_code = True
for line in lines_to_add:
scl_output.append(f" {line}")
if network_has_code:
scl_output.append("")
end_keyword = (
"END_FUNCTION_BLOCK"
if block_type_keyword == "FUNCTION_BLOCK"
else "END_FUNCTION"
)
scl_output.append(end_keyword)
# --- Write File ---
print(f"Escribiendo archivo SCL en: {output_scl_filepath}")
try:
with open(output_scl_filepath, "w", encoding="utf-8") as f:
for line in scl_output:
f.write(line + "\n")
print("Generación de SCL completada.")
except Exception as e:
print(f"Error al escribir el archivo SCL: {e}")
# --- Ejecución ---
if __name__ == "__main__":
xml_filename_base = "BlenderCtrl__Main"
input_json_file = f"{xml_filename_base}_simplified_processed.json"
output_scl_file = input_json_file.replace("_simplified_processed.json", ".scl")
generate_scl(input_json_file, output_scl_file)

View File

@ -0,0 +1,284 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="AttributeList" type="AttributeList_T"/>
<xs:complexType name="AttributeList_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="BooleanAttribute"/>
<xs:element ref="IntegerAttribute"/>
<xs:element ref="RealAttribute"/>
<xs:element ref="StringAttribute"/>
<xs:element ref="DateAttribute"/>
</xs:choice>
</xs:complexType>
<xs:element name="Blank" type="Blank_T"/>
<xs:complexType name="Blank_T">
<xs:attribute name="Num" type="xs:positiveInteger" use="optional" default="1"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="BooleanAttribute" type="BooleanAttribute_T">
<xs:annotation>
<xs:documentation>A member attribute with a type restriction of boolean.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="BooleanAttribute_T">
<xs:simpleContent>
<xs:extension base="xs:boolean">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Comment" type="Comment_T">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:element>
<xs:group name="Comment_G">
<xs:annotation>
<xs:documentation>LAD/FBD: Only for Parts</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element ref="Comment"/>
<xs:element ref="LineComment"/>
<xs:element ref="Blank"/>
<xs:element ref="NewLine"/>
</xs:choice>
</xs:sequence>
</xs:group>
<xs:complexType name="Comment_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>For NumBLs in STL. NumBLs is the count of the blank spaces before the actual text in the Comment. This is informative.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="MultiLanguageText" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Inserted" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Denotes if the comment is at the end of the line (using /*/) or inside the line (using (/* */) )</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="DateAttribute" type="DateAttribute_T"/>
<xs:complexType name="DateAttribute_T">
<xs:simpleContent>
<xs:extension base="xs:dateTime">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="GUID_TP">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="IntegerAttribute" type="IntegerAttribute_T">
<xs:annotation>
<xs:documentation>A member attribute with a type restriction of integer.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="IntegerAttribute_T">
<xs:annotation>
<xs:documentation>Not for LAD/FBD.</xs:documentation>
</xs:annotation>
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="Lang_TP">
<xs:restriction base="xs:string">
<xs:pattern value="[a-zA-Z]{2}-[a-zA-Z]{2}"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="LineComment" type="LineComment_T">
<xs:annotation>
<xs:documentation>Not for LAD/FBD </xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="LineComment_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>For NumBLs in STL. NumBLs is the count of the blank spaces before the actual text in the LineComment. This is informative.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice maxOccurs="unbounded">
<xs:element ref="Text"/>
<xs:element ref="Comment"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Inserted" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Denotes if the comment is at the end of the line (using //) or inside the line (using /* */)</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="NoClosingBracket" type="xs:boolean" default="false"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="MultiLanguageText" type="MultiLanguageText_T"/>
<xs:complexType name="MultiLanguageText_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Lang" type="Lang_TP" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="NewLine" type="NewLine_T"/>
<xs:complexType name="NewLine_T">
<xs:attribute name="Num" type="xs:positiveInteger" use="optional" default="1"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="RealAttribute" type="RealAttribute_T">
<xs:annotation>
<xs:documentation>A member attribute with a type restriction of real.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="RealAttribute_T">
<xs:simpleContent>
<xs:extension base="xs:double">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="SectionName_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="Input"/>
<xs:enumeration value="Return"/>
<xs:enumeration value="Output"/>
<xs:enumeration value="InOut"/>
<xs:enumeration value="Static"/>
<xs:enumeration value="Temp"/>
<xs:enumeration value="Constant"/>
<xs:enumeration value="Base"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SimaticName_TP">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:simpleType name="SimaticType_TE">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="StringAttribute" type="StringAttribute_T">
<xs:annotation>
<xs:documentation>A member attribute with a type restriction of string.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="StringAttribute_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>Exported only with ReadOnly option, ignored during import.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SystemDefined" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>An attribute of attribute, denotes if it is defined by a user or the system itself. In V14, if exists it is always true.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Text" type="Text_T"/>
<xs:complexType name="Text_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Token" type="Token_T"/>
<xs:group name="Token_G">
<xs:choice>
<xs:element ref="Token" minOccurs="0"/>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:choice>
</xs:group>
<xs:complexType name="Token_T">
<xs:sequence minOccurs="0">
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>For NumBLs. NumBLs is the count of the blank spaces at the start.This is informative.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="Text" type="Token_TE" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:simpleType name="Token_TE">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:simpleType name="VersionString_TP">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]+(.[0-9]+){0,3}"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="ViewInfo" type="ViewInfo_T"/>
<xs:complexType name="ViewInfo_T">
<xs:attribute name="Start" type="xs:boolean" use="optional"/>
<xs:attribute name="XPos" type="xs:int" use="optional"/>
<xs:attribute name="YPos" type="xs:int" use="optional"/>
<xs:attribute name="Width" type="xs:int" use="optional"/>
<xs:attribute name="Height" type="xs:int" use="optional"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,19 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="SnapshotValues" type="SnapshotValues_T"/>
<xs:complexType name="SnapshotValues_T">
<xs:sequence>
<xs:element ref="Value" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Value" type="Value_T"/>
<xs:complexType name="Value_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Path" type="xs:string" use="required"/>
<xs:attribute name="Type" type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,162 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2020. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.Common_v3.xsd"/>
<xs:simpleType name="Accessibility_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Public"/>
<xs:enumeration value="Internal"/>
<xs:enumeration value="Protected"/>
<xs:enumeration value="Private"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="IndexPath_TP">
<xs:restriction base="xs:string">
<xs:pattern value="-?\d+(,-?\d+)*(;(-?\d+(,-?\d+)*))?"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Member" type="Member_T"/>
<xs:complexType name="Member_T">
<xs:sequence>
<xs:element ref="AttributeList" minOccurs="0" maxOccurs="1"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Member"/>
<xs:element ref="Sections"/>
<xs:element ref="StartValue"/>
<xs:element ref="Comment"/>
<xs:element ref="AssignedProDiagFB"/>
<xs:element ref="Subelement"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="Datatype" type="SimaticType_TE" use="required"/>
<xs:attribute name="Version" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>The version of the library type to use. Previous to this, the version was written inside the Datatype attribute itself, like "dtl:v1.0". Now, this is written in two separate attributes, to mitigate problems with weird names ("dtl:v1.0" could be a UDT name!).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Remanence" type="Remanence_TE" default="NonRetain"/>
<xs:attribute name="Accessibility" type="Accessibility_TE" default="Public"/>
<xs:attribute name="Informative" type="xs:boolean" default="false"/>
</xs:complexType>
<xs:simpleType name="MemberAttributes_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="CodeReadOnly">
<xs:annotation>
<xs:documentation>Write acces only inside function</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="At">
<xs:annotation>
<xs:documentation>string: Member shares offset with another member in this structure</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SetPoint">
<xs:annotation>
<xs:documentation>boolean: Member can be synchronized with work memory</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="UserVisible">
<xs:annotation>
<xs:documentation>boolean: Editor does not show the member</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="UserReadOnly">
<xs:annotation>
<xs:documentation>boolean: User cannot change member name</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="UserDeletable">
<xs:annotation>
<xs:documentation>boolean: Editor does not allow to delete the member</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="HmiAccessible">
<xs:annotation>
<xs:documentation>boolean: No HMI access, no structure item</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="HmiVisible">
<xs:annotation>
<xs:documentation>boolean: Filter to reduce the number of members shown in the first place</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Offset">
<xs:annotation>
<xs:documentation>integer: </xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="PaddedSize">
<xs:annotation>
<xs:documentation>integer: </xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="HiddenAssignment">
<xs:annotation>
<xs:documentation>boolean: Hide assignement at call if matches with PredefinedAssignment</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="PredefinedAssignment">
<xs:annotation>
<xs:documentation>string: Input for the paramter used when call is placed</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="ReadOnlyAssignment">
<xs:annotation>
<xs:documentation>boolean: The user cannot change the predefined assignement at the call</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="Remanence_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="SetInIDB"/>
<xs:enumeration value="NonRetain"/>
<xs:enumeration value="Retain"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Section" type="Section_T"/>
<xs:complexType name="Section_T">
<xs:sequence>
<xs:element ref="Sections" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>Base Class</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Member" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Name" type="SectionName_TE" use="required"/>
</xs:complexType>
<xs:element name="Sections" type="Sections_T"/>
<xs:complexType name="Sections_T">
<xs:sequence>
<xs:element ref="AttributeList" minOccurs="0" maxOccurs="1"/>
<xs:element ref="Section" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Datatype" type="SimaticType_TE"/>
<xs:attribute name="Version" type="xs:string" use="optional"/>
</xs:complexType>
<xs:element name="StartValue" type="StartValue_T"/>
<xs:element name="AssignedProDiagFB" type="xs:string"/>
<xs:complexType name="StartValue_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="ConstantName" type="SimaticName_TP"/>
<xs:attribute name="IsBulkValue" type="xs:boolean" default="false"/>
<xs:attribute name="Informative" type="xs:boolean" default="false"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Subelement" type="Subelement_T"/>
<xs:complexType name="Subelement_T">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="StartValue"/>
<xs:element ref="Comment"/>
<xs:element ref="AssignedProDiagFB"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Path" type="IndexPath_TP"/>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,593 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.Common_v3.xsd"/>
<xs:element name="AbsoluteOffset" type="AbsoluteOffset_T"/>
<xs:complexType name="AbsoluteOffset_T">
<xs:attribute name="BitOffset" type="xs:int" use="required">
<xs:annotation>
<xs:documentation>Byte * 8 + Bit</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Type" type="xs:string" use="required"/>
</xs:complexType>
<xs:element name="Access" type="Access_T"/>
<xs:group name="Access_G">
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element ref="Access"/>
<xs:element ref="Token"/>
<xs:group ref="Comment_G"/>
</xs:choice>
</xs:sequence>
</xs:group>
<xs:complexType name="Access_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for NumBLs. NumBLs is informative. Not for LAD/FBD.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:choice>
<xs:element ref="Label"/>
<xs:element ref="Constant"/>
<xs:element ref="CallInfo">
<xs:annotation>
<xs:documentation>call of a user block. Not in Graph ActionList.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Instruction">
<xs:annotation>
<xs:documentation>call of an instruction. Not for LAD/FBD, Graph ActionList.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Indirect">
<xs:annotation>
<xs:documentation>STL specific</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Statusword"/>
<xs:element ref="PredefinedVariable">
<xs:annotation>
<xs:documentation>Only in SCL</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Expression">
<xs:annotation>
<xs:documentation>SCL specific</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Symbol"/>
<xs:element ref="Address">
<xs:annotation>
<xs:documentation>for absolute addresses</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="DataType"/>
<xs:element ref="Reference"/>
</xs:choice>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Scope" use="required">
<xs:simpleType>
<xs:restriction base="Scope_TE"/>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:simpleType name="AccessModifier_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="Array"/>
<xs:enumeration value="Reference"/>
<xs:enumeration value="ReferenceToArray"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Address" type="Address_T"/>
<xs:complexType name="Address_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="BooleanAttribute"/>
</xs:choice>
<xs:attribute name="Area" type="Area_TE" use="required"/>
<xs:attribute name="Type" type="SimaticName_TP" use="optional"/>
<xs:attribute name="BlockNumber" type="xs:int" use="optional">
<xs:annotation>
<xs:documentation>for DB access</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="BitOffset" type="xs:int" use="optional">
<xs:annotation>
<xs:documentation>In general it is Byte * 8 + Bit. But if it is used for addressing a DB we will find the number of the DB here (e.g. "DB12" ->12).</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Informative" type="xs:boolean" default="false">
<xs:annotation>
<xs:documentation>if true, the import unnoted it</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:simpleType name="Area_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="PeripheryInput"/>
<xs:enumeration value="PeripheryOutput"/>
<xs:enumeration value="Input"/>
<xs:enumeration value="Output"/>
<xs:enumeration value="Memory"/>
<xs:enumeration value="FB"/>
<xs:enumeration value="FC"/>
<xs:enumeration value="DB">
<xs:annotation>
<xs:documentation>partly qualified access with DB register</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DI">
<xs:annotation>
<xs:documentation>partly qualified access with DI register</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Timer"/>
<xs:enumeration value="Counter"/>
<xs:enumeration value="Local">
<xs:annotation>
<xs:documentation>Classic Local Stack</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="BlockType_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="DB"/>
<xs:enumeration value="FB"/>
<xs:enumeration value="FC"/>
<xs:enumeration value="OB"/>
<xs:enumeration value="UDT"/>
<xs:enumeration value="FBT"/>
<xs:enumeration value="FCT"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="CallInfo" type="CallInfo_T"/>
<xs:complexType name="CallInfo_T">
<xs:annotation>
<xs:documentation>Not for LAD/FBD. </xs:documentation>
</xs:annotation>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="IntegerAttribute">
<xs:annotation>
<xs:documentation>for BlockNumber. BlockNumber is informative.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="DateAttribute">
<xs:annotation>
<xs:documentation>for ParameterModifiedTS. ParameterModifiedTS is informative</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Instance"/>
<xs:element ref="NamelessParameter" minOccurs="0" maxOccurs="unbounded"/>
<xs:group ref="Token_G" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Parameter" minOccurs="0" maxOccurs="unbounded"/>
</xs:choice>
<xs:attribute name="Name" type="SimaticName_TP" use="optional"/>
<xs:attribute name="BlockType" type="BlockType_TE" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="Component" type="Component_T"/>
<xs:complexType name="Component_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:group ref="Comment_G" minOccurs="0">
<xs:annotation>
<xs:documentation>SCL</xs:documentation>
</xs:annotation>
</xs:group>
<xs:element ref="Token" minOccurs="0">
<xs:annotation>
<xs:documentation>SCL</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Access">
<xs:annotation>
<xs:documentation>For the indices of an array</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="BooleanAttribute" minOccurs="0"/>
</xs:choice>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="SliceAccessModifier" type="SliceAccessModifier_TP" default="undef"/>
<xs:attribute name="SimpleAccessModifier" type="SimpleAccessModifier_TP" default="None"/>
<xs:attribute name="AccessModifier" type="AccessModifier_TE" default="None">
<xs:annotation>
<xs:documentation>If component has child AccessModifier is Array else AccessModifier is None</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="Constant" type="Constant_T"/>
<xs:complexType name="Constant_T">
<xs:sequence>
<xs:element ref="ConstantType" minOccurs="0"/>
<xs:element ref="ConstantValue" minOccurs="0"/>
<xs:element ref="StringAttribute" minOccurs="0" maxOccurs="2">
<xs:annotation>
<xs:documentation>for Format and FormatFlags. They are informative..</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="BooleanAttribute" minOccurs="0" maxOccurs="2"/>
</xs:sequence>
<xs:attribute name="Name" type="SimaticName_TP"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="ConstantType" type="ConstantType_T"/>
<xs:complexType name="ConstantType_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Informative" type="xs:boolean" use="optional"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="ConstantValue" type="ConstantValue_T"/>
<xs:complexType name="ConstantValue_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Informative" type="xs:boolean" use="optional"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="Expression" type="Expression_T"/>
<xs:complexType name="Expression_T">
<xs:sequence maxOccurs="unbounded">
<xs:choice>
<xs:element ref="Access"/>
<xs:element ref="Token"/>
</xs:choice>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="UId" type="xs:int"/>
</xs:complexType>
<xs:element name="DataType" type="DataType_T"/>
<xs:complexType name="DataType_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Informative" type="xs:boolean" use="optional"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="Format_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Real"/>
<xs:enumeration value="Bin"/>
<xs:enumeration value="DecSigned"/>
<xs:enumeration value="DecUnsigned"/>
<xs:enumeration value="Pointer"/>
<xs:enumeration value="CharSequence"/>
<xs:enumeration value="DecSequence"/>
<xs:enumeration value="Hex"/>
<xs:enumeration value="S5Count"/>
<xs:enumeration value="Time"/>
<xs:enumeration value="Date"/>
<xs:enumeration value="TimeOfDay"/>
<xs:enumeration value="S5Time"/>
<xs:enumeration value="Bool"/>
<xs:enumeration value="Oct"/>
<xs:enumeration value="Bcd"/>
<xs:enumeration value="DateAndTime"/>
<xs:enumeration value="String"/>
<xs:enumeration value="Any"/>
<xs:enumeration value="Number"/>
<xs:enumeration value="Char"/>
<xs:enumeration value="HexSequence"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="FormatFlags_TE">
<xs:restriction base="xs:string">
<xs:pattern value="None"/>
<xs:pattern value="((Lower|Format|Size|Under|Exp|TypeQualifier)(,\s*)?)*"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Indirect" type="Indirect_T"/>
<xs:complexType name="Indirect_T">
<xs:sequence minOccurs="0">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Token"/>
<xs:group ref="Comment_G"/>
</xs:choice>
<xs:element ref="Access" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Width" type="Width_TE" use="required"/>
<xs:attribute name="Area" type="Area_TE" use="optional"/>
<xs:attribute name="Register" type="Register_TE" use="optional"/>
<xs:attribute name="BitOffset" use="optional"/>
</xs:complexType>
<xs:element name="Instance" type="Instance_T"/>
<xs:complexType name="Instance_T">
<xs:sequence maxOccurs="unbounded">
<xs:choice>
<xs:element ref="Component"/>
<xs:element ref="AbsoluteOffset"/>
<xs:element ref="Token">
<xs:annotation>
<xs:documentation>the DOT; only if separated. Not in Graph ActionList, not in LAD/FBD.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Address"/>
</xs:choice>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="UId" type="xs:int">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Scope" type="Scope_TE" use="required"/>
</xs:complexType>
<xs:element name="Instruction" type="Instruction_T"/>
<xs:complexType name="Instruction_T">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:group ref="Token_G"/>
<xs:element ref="TemplateValue"/>
<xs:element ref="Instance"/>
<xs:element ref="NamelessParameter" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Parameter" minOccurs="0" maxOccurs="unbounded"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Name" use="optional">
<xs:simpleType>
<xs:restriction base="SimaticName_TP">
<xs:minLength value="1"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Version" type="VersionString_TP"/>
<xs:attribute name="Informative" type="xs:boolean" default="false"/>
<xs:attribute name="UId" type="xs:int"/>
</xs:complexType>
<xs:simpleType name="InterfaceFlags_TP">
<xs:restriction base="xs:string">
<xs:pattern value="None"/>
<xs:pattern value="((Mandatory|S7_Visible)(,\s*)?)*"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Label" type="Label_T"/>
<xs:complexType name="Label_T">
<xs:sequence minOccurs="0">
<xs:annotation>
<xs:documentation>SCL only</xs:documentation>
</xs:annotation>
<xs:element ref="BooleanAttribute" minOccurs="0"/>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="Token" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Name" type="SimaticName_TP" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
<xs:element name="NamelessParameter" type="NamelessParameter_T"/>
<xs:complexType name="NamelessParameter_T">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="StringAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for InterfaceFlags. InterfaceFlags is informative</xs:documentation>
<xs:documentation>The type of the value should be InterfaceFlags_TP</xs:documentation>
<xs:documentation>The default value is "S7_Visible"</xs:documentation>
</xs:annotation>
</xs:element>
<xs:group ref="Access_G"/>
</xs:sequence>
<xs:attribute name="UId" type="xs:int"/>
</xs:complexType>
<xs:element name="Parameter" type="Parameter_T"/>
<xs:complexType name="Parameter_T">
<xs:sequence minOccurs="0">
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for NumBLs. NumBLs is informative</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="StringAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for InterfaceFlags. InterfaceFlags is informative</xs:documentation>
<xs:documentation>The type of the value should be InterfaceFlags_TP</xs:documentation>
<xs:documentation>The default value is "S7_Visible"</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="BooleanAttribute" minOccurs="0" maxOccurs="unbounded"/>
<xs:group ref="Access_G" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Name" type="SimaticName_TP" use="required"/>
<xs:attribute name="Section" type="SectionName_TE" use="optional"/>
<xs:attribute name="Type" type="SimaticType_TE"/>
<xs:attribute name="TemplateReference" type="xs:string"/>
<xs:attribute name="Informative" type="xs:boolean" default="false"/>
<xs:attribute name="UId" type="xs:int"/>
</xs:complexType>
<xs:element name="PredefinedVariable" type="PredefinedVariable_T"/>
<xs:complexType name="PredefinedVariable_T">
<xs:attribute name="Name" type="PredefinedVariable_TE" use="required"/>
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:complexType>
<xs:simpleType name="PredefinedVariable_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="ENO"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Reference" type="Reference_T"/>
<xs:complexType name="Reference_T">
<xs:sequence>
<xs:sequence minOccurs="0">
<xs:annotation>
<xs:documentation>SCL</xs:documentation>
</xs:annotation>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="Token"/>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:element ref="Access"/>
<xs:sequence minOccurs="0">
<xs:annotation>
<xs:documentation>SCL</xs:documentation>
</xs:annotation>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="Token"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="Register_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="AR1"/>
<xs:enumeration value="AR2"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="Scope_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Undef">
<xs:annotation>
<xs:documentation>Symbols we do not know what they are</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="GlobalConstant"/>
<xs:enumeration value="LocalConstant"/>
<xs:enumeration value="GlobalVariable"/>
<xs:enumeration value="LocalVariable"/>
<xs:enumeration value="Instruction"/>
<xs:enumeration value="Label"/>
<xs:enumeration value="TypedConstant"/>
<xs:enumeration value="AddressConstant"/>
<xs:enumeration value="LiteralConstant"/>
<xs:enumeration value="AlarmConstant"/>
<xs:enumeration value="Address"/>
<xs:enumeration value="Statusword"/>
<xs:enumeration value="Expression"/>
<xs:enumeration value="Unnamed"/>
<xs:enumeration value="Call"/>
<xs:enumeration value="CallWithType"/>
<xs:enumeration value="UserType"/>
<xs:enumeration value="SystemType"/>
<xs:enumeration value="Reference"/>
<xs:enumeration value="PredefinedVariable"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SimpleAccessModifier_TP">
<xs:restriction base="xs:string">
<xs:pattern value="None|((Periphery|QualityInformation)(,\s*)?)*"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SimpleType_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="undef"/>
<xs:enumeration value="Bool"/>
<xs:enumeration value="Byte"/>
<xs:enumeration value="Char"/>
<xs:enumeration value="Word"/>
<xs:enumeration value="Int"/>
<xs:enumeration value="DWord"/>
<xs:enumeration value="DInt"/>
<xs:enumeration value="Real"/>
<xs:enumeration value="LReal"/>
<xs:enumeration value="Timer"/>
<xs:enumeration value="S5Time"/>
<xs:enumeration value="ARef"/>
<xs:enumeration value="Any"/>
<xs:enumeration value="Time"/>
<xs:enumeration value="S5Count"/>
<xs:enumeration value="Counter"/>
<xs:enumeration value="Block_DB"/>
<xs:enumeration value="Block_FB"/>
<xs:enumeration value="Block_FC"/>
<xs:enumeration value="Block_SFB"/>
<xs:enumeration value="Block_UDT"/>
<xs:enumeration value="Multi_FB"/>
<xs:enumeration value="Multi_SFB"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SliceAccessModifier_TP">
<xs:restriction base="xs:string">
<xs:pattern value="([xbwdXBWD]\d+)|undef"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Statusword" type="Statusword_T">
<xs:annotation>
<xs:documentation>Only for S7-300/400/WinAC</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="Statusword_T">
<xs:attribute name="Combination" type="Statusword_TE" use="required"/>
</xs:complexType>
<xs:simpleType name="Statusword_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="BR"/>
<xs:enumeration value="OV"/>
<xs:enumeration value="OS"/>
<xs:enumeration value="EQ"/>
<xs:enumeration value="NE"/>
<xs:enumeration value="GT"/>
<xs:enumeration value="LT"/>
<xs:enumeration value="GE"/>
<xs:enumeration value="LE"/>
<xs:enumeration value="UO"/>
<xs:enumeration value="NU"/>
<xs:enumeration value="STW"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Symbol" type="Symbol_T"/>
<xs:complexType name="Symbol_T">
<xs:choice maxOccurs="unbounded">
<xs:element ref="Component"/>
<xs:element ref="Address"/>
<xs:element ref="AbsoluteOffset"/>
<xs:element ref="Token">
<xs:annotation>
<xs:documentation>SCL.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Access"/>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:choice>
<xs:attribute name="UId" type="xs:int">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Scope" type="Scope_TE"/>
</xs:complexType>
<xs:simpleType name="TemplateType_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Cardinality"/>
<xs:enumeration value="Type"/>
<xs:enumeration value="Operation"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="TemplateValue" type="TemplateValue_T"/>
<xs:complexType name="TemplateValue_T">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="Name" type="SimaticName_TP" use="required"/>
<xs:attribute name="Type" type="TemplateType_TE" use="required"/>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="Width_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="Bit"/>
<xs:enumeration value="Byte"/>
<xs:enumeration value="Word"/>
<xs:enumeration value="Offset"/>
<xs:enumeration value="Double"/>
<xs:enumeration value="Pointer"/>
<xs:enumeration value="Long"/>
<xs:enumeration value="Any"/>
<xs:enumeration value="Block"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

View File

@ -0,0 +1,31 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.Access_v4.xsd"/>
<xs:element name="LabelDeclaration" type="LabelDeclaration_T"/>
<xs:complexType name="LabelDeclaration_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for NumBLs. NumBLs is informative</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Label"/>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:sequence minOccurs="0">
<xs:element ref="Token">
<xs:annotation>
<xs:documentation>the COLON; only if separated</xs:documentation>
</xs:annotation>
</xs:element>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
</xs:sequence>
<xs:attribute name="UId" type="xs:int">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,350 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.Access_v4.xsd"/>
<xs:include schemaLocation="SW.PlcBlocks.LADFBD_v4.xsd"/>
<xs:complexType name="Action_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Access"/>
<xs:element ref="Token"/>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:choice>
<xs:attribute name="Event" type="Event_TE"/>
<xs:attribute name="Interlock" type="xs:boolean"/>
<xs:attribute name="Qualifier" type="Qualifier_TE"/>
</xs:complexType>
<xs:simpleType name="Event_TE">
<xs:restriction base="xs:string">
<xs:enumeration value=""/>
<xs:enumeration value="A1"/>
<xs:enumeration value="L0"/>
<xs:enumeration value="L1"/>
<xs:enumeration value="R1"/>
<xs:enumeration value="S0"/>
<xs:enumeration value="S1"/>
<xs:enumeration value="V0"/>
<xs:enumeration value="V1"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="Qualifier_TE">
<xs:restriction base="xs:string">
<xs:enumeration value=""/>
<xs:enumeration value="CD"/>
<xs:enumeration value="CR"/>
<xs:enumeration value="CS"/>
<xs:enumeration value="CU"/>
<xs:enumeration value="D"/>
<xs:enumeration value="L"/>
<xs:enumeration value="N"/>
<xs:enumeration value="ON"/>
<xs:enumeration value="OFF"/>
<xs:enumeration value="R"/>
<xs:enumeration value="S"/>
<xs:enumeration value="TD"/>
<xs:enumeration value="TF"/>
<xs:enumeration value="TL"/>
<xs:enumeration value="TR"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Actions" type="Actions_T"/>
<xs:complexType name="Actions_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Action"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="AlarmSupportingLanguageModule_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:element ref="AlarmText" minOccurs="0"/>
<xs:element ref="FlgNet"/>
</xs:sequence>
<xs:attribute name="ProgrammingLanguage" type="ProgrammingLanguage_TE" use="required"/>
</xs:complexType>
<xs:element name="AlarmText" type="AlarmText_T"/>
<xs:complexType name="AlarmText_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Temporary change for enable of empty alarm text because of the graph alarm handling reconstruction.</xs:documentation>
</xs:annotation>
<xs:element ref="MultiLanguageText"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Branch_T">
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="Type" type="Branch_TE" use="required"/>
<xs:attribute name="Cardinality" type="xs:int" use="required"/>
</xs:complexType>
<xs:simpleType name="Branch_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="SimBegin"/>
<xs:enumeration value="SimEnd"/>
<xs:enumeration value="AltBegin"/>
<xs:enumeration value="AltEnd"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Branches" type="Branches_T"/>
<xs:complexType name="Branches_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Branch"/>
</xs:sequence>
</xs:complexType>
<xs:element name="BranchRef" type="BranchRef_T"/>
<xs:complexType name="BranchRef_T">
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="In" type="xs:int"/>
<xs:attribute name="Out" type="xs:int"/>
</xs:complexType>
<xs:element name="Connection" type="Connection_T"/>
<xs:complexType name="Connection_T">
<xs:sequence>
<xs:element ref="NodeFrom"/>
<xs:element ref="NodeTo"/>
<xs:element ref="LinkType"/>
</xs:sequence>
</xs:complexType>
<xs:element name="EndConnection"/>
<xs:element name="Graph" type="Graph_T"/>
<xs:complexType name="AlarmsSettings_T">
<xs:sequence>
<xs:element ref="AlarmSupervisionCategories"/>
<xs:element ref="AlarmInterlockCategory"/>
<xs:element ref="AlarmSubcategory1Interlock"/>
<xs:element ref="AlarmSubcategory2Interlock"/>
<xs:element ref="AlarmCategorySupervision"/>
<xs:element ref="AlarmSubcategory1Supervision"/>
<xs:element ref="AlarmSubcategory2Supervision"/>
<xs:element ref="AlarmWarningCategory"/>
<xs:element ref="AlarmSubcategory1Warning"/>
<xs:element ref="AlarmSubcategory2Warning"/>
</xs:sequence>
</xs:complexType>
<xs:element name="AlarmsSettings" type="AlarmsSettings_T"/>
<xs:complexType name="Graph_T">
<xs:sequence>
<xs:element ref="PreOperations"/>
<xs:element ref="Sequence" maxOccurs="unbounded"/>
<xs:element ref="PostOperations"/>
<xs:element ref="AlarmsSettings"/>
</xs:sequence>
</xs:complexType>
<xs:element name="IdentRef" type="IdentRef_T"/>
<xs:complexType name="IdentRef_T">
<xs:sequence>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="ViewInfo" minOccurs="0"/>
</xs:sequence>
<xs:attributeGroup ref="PartAttribute_G"/>
</xs:complexType>
<xs:element name="Interlock" type="AlarmSupportingLanguageModule_T"/>
<xs:element name="Interlocks" type="Interlocks_T"/>
<xs:complexType name="Interlocks_T">
<xs:sequence>
<xs:element ref="Interlock"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="Link_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Direct"/>
<xs:enumeration value="Jump"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="Node_T">
<xs:choice>
<xs:element ref="StepRef"/>
<xs:element ref="TransitionRef"/>
<xs:element ref="BranchRef"/>
<xs:element ref="EndConnection"/>
</xs:choice>
</xs:complexType>
<xs:element name="NodeFrom" type="Node_T"/>
<xs:element name="NodeTo" type="Node_T"/>
<xs:element name="LinkType" type="Link_TE"/>
<xs:element name="PermanentOperation" type="PermanentOperation_T"/>
<xs:complexType name="PermanentOperation_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:element ref="FlgNet" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="ProgrammingLanguage" type="ProgrammingLanguage_TE" use="required"/>
</xs:complexType>
<xs:complexType name="PermanentOperations_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="PermanentOperation" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="PostOperations" type="PermanentOperations_T"/>
<xs:element name="PreOperations" type="PermanentOperations_T"/>
<xs:simpleType name="ProgrammingContext_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Plain"/>
<xs:enumeration value="GraphTransition"/>
<xs:enumeration value="GraphSupervision"/>
<xs:enumeration value="GraphInterlock"/>
<xs:enumeration value="GraphActions"/>
<xs:enumeration value="PreOperation"/>
<xs:enumeration value="PostOperation"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProgrammingLanguage_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="STL"/>
<xs:enumeration value="FBD"/>
<xs:enumeration value="LAD"/>
<xs:enumeration value="FBD_IEC"/>
<xs:enumeration value="LAD_IEC"/>
<xs:enumeration value="GRAPH"/>
<xs:enumeration value="DB"/>
<xs:enumeration value="SDB"/>
<xs:enumeration value="DB_CPU"/>
<xs:enumeration value="FB_IDB"/>
<xs:enumeration value="SFB_IDB"/>
<xs:enumeration value="DT_DB"/>
<xs:enumeration value="SCL"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="Sequence" type="Sequence_T"/>
<xs:complexType name="Sequence_T">
<xs:sequence>
<xs:element ref="Title" minOccurs="0"/>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="Steps"/>
<xs:element ref="Transitions"/>
<xs:element ref="Branches"/>
<xs:element ref="Connections"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Step">
<xs:complexType>
<xs:complexContent>
<xs:extension base="Step_T"/>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:complexType name="Step_T">
<xs:sequence>
<xs:element ref="StepName" minOccurs="0"/>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="Actions"/>
<xs:element ref="Supervisions"/>
<xs:element ref="Interlocks"/>
</xs:sequence>
<xs:attribute name="IsMissing" type="xs:boolean" default="false"/>
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="Init" type="xs:boolean" default="false"/>
<xs:attribute name="Name" use="required"/>
<xs:attribute name="MaximumStepTime" type="xs:string" use="optional"/>
<xs:attribute name="WarningTime" type="xs:string" use="optional"/>
</xs:complexType>
<xs:element name="StepRef" type="StepRef_T"/>
<xs:complexType name="StepRef_T">
<xs:attribute name="Number" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Steps" type="Steps_T"/>
<xs:complexType name="Steps_T">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="Step"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Connections" type="Connections_T"/>
<xs:complexType name="Connections_T">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="Connection"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Supervision" type="AlarmSupportingLanguageModule_T"/>
<xs:element name="Supervisions" type="Supervisions_T"/>
<xs:complexType name="Supervisions_T">
<xs:sequence>
<xs:element ref="Supervision"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Title" type="Comment_T"/>
<xs:complexType name="Transition_T">
<xs:sequence>
<xs:element ref="TransitionName" minOccurs="0"/>
<xs:element ref="Comment" minOccurs="0"/>
<xs:element ref="FlgNet"/>
</xs:sequence>
<xs:attribute name="IsMissing" type="xs:boolean" default="false"/>
<xs:attribute name="Name" use="required"/>
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="ProgrammingLanguage" type="ProgrammingLanguage_TE" use="required"/>
</xs:complexType>
<xs:element name="TransitionRef" type="TransitionRef_T"/>
<xs:complexType name="TransitionRef_T">
<xs:attribute name="Number" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Transitions" type="Transitions_T"/>
<xs:complexType name="Transitions_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Transition"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Action" type="Action_T"/>
<xs:element name="Transition" type="Transition_T"/>
<xs:element name="Branch" type="Branch_T"/>
<xs:element name="AlarmSupervisionCategories" type="AlarmSupervisionCategories_T"/>
<xs:complexType name="AlarmSupervisionCategories_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="AlarmSupervisionCategory"/>
</xs:sequence>
</xs:complexType>
<xs:element name="AlarmSupervisionCategory" type="AlarmSupervisionCategory_T"/>
<xs:complexType name="AlarmSupervisionCategory_T">
<xs:sequence>
<xs:element ref="Token" minOccurs="0">
<xs:annotation>
<xs:documentation>Enabler token</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="Id" type="xs:unsignedShort" use="required"/>
<xs:attribute name="DisplayClass" use="required">
<xs:simpleType>
<xs:restriction base="xs:unsignedShort">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="16"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:element name="AlarmInterlockCategory" type="AlarmCategory_T"/>
<xs:element name="AlarmSubcategory1Interlock" type="AlarmSubcategory_T"/>
<xs:element name="AlarmSubcategory2Interlock" type="AlarmSubcategory_T"/>
<xs:element name="AlarmCategorySupervision" type="AlarmCategory_T"/>
<xs:element name="AlarmSubcategory1Supervision" type="AlarmSubcategory_T"/>
<xs:element name="AlarmSubcategory2Supervision" type="AlarmSubcategory_T"/>
<xs:element name="AlarmWarningCategory" type="AlarmCategory_T"/>
<xs:element name="AlarmSubcategory1Warning" type="AlarmSubcategory_T"/>
<xs:element name="AlarmSubcategory2Warning" type="AlarmSubcategory_T"/>
<xs:complexType name="AlarmCategory_T">
<xs:attribute name="Id" type="xs:unsignedShort" use="required"/>
</xs:complexType>
<xs:element name="TransitionName" type="TransitionName_T"/>
<xs:complexType name="TransitionName_T">
<xs:sequence>
<xs:annotation>
<xs:documentation>For translated transiton names</xs:documentation>
</xs:annotation>
<xs:element ref="MultiLanguageText" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="StepName" type="StepName_T"/>
<xs:complexType name="StepName_T">
<xs:sequence>
<xs:annotation>
<xs:documentation>For translated step names</xs:documentation>
</xs:annotation>
<xs:element ref="MultiLanguageText" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="AlarmSubcategory_T">
<xs:attribute name="Id" type="xs:unsignedShort" use="required"/>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,46 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<!-- <xs:include schemaLocation="SW.Common_v3.xsd"/>-->
<xs:element name="SupervisionFB">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="StateStruct">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Number" type="xs:int"/>
<xs:element name="Multiinstance">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="BlockTypeSupervisionNumber" type="xs:int"/>
<xs:element name="BlockInstSupervisionGroups" type="BlockInstSupervisionGroupsType"/>
<xs:element name="BlockInstSupervisionGroup">
<xs:complexType>
<xs:sequence>
<xs:element ref="Multiinstance" minOccurs="0"/>
<xs:element ref="BlockInstSupervision" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="BlockInstSupervision">
<xs:complexType>
<xs:sequence>
<xs:element ref="Number"/>
<xs:element ref="StateStruct"/>
<xs:element ref="BlockTypeSupervisionNumber"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="BlockInstSupervisionGroupsType">
<xs:sequence>
<xs:element ref="BlockInstSupervisionGroup" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,150 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.CompileUnitCommon_v4.xsd"/>
<xs:element name="Powerrail" type="Powerrail_T"/>
<xs:complexType name="Powerrail_T"/>
<xs:element name="Openbranch" type="Openbranch_T"/>
<xs:complexType name="Openbranch_T"/>
<xs:element name="OpenCon" type="OpenCon_T"/>
<xs:complexType name="OpenCon_T">
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Call" type="Call_T"/>
<xs:complexType name="Call_T">
<xs:sequence>
<xs:element ref="CallInfo"/>
<xs:group ref="PartSequence_G"/>
</xs:sequence>
<xs:attributeGroup ref="PartAttribute_G"/>
</xs:complexType>
<xs:complexType name="Equation_T">
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
</xs:complexType>
<xs:element name="FlgNet" type="FlgNet_T"/>
<xs:complexType name="FlgNet_T">
<xs:sequence>
<xs:element ref="Labels" minOccurs="0"/>
<xs:element ref="Parts"/>
<xs:element ref="Wires" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="GateName_TE">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="IdentCon" type="IdentCon_T"/>
<xs:complexType name="IdentCon_T">
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Invisible" type="Invisible_T">
<xs:annotation>
<xs:documentation>The invisible pins of this part.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="Invisible_T">
<xs:attribute name="Name" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>The name of the invisible pin.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:element name="Labels" type="Labels_T"/>
<xs:complexType name="Labels_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="LabelDeclaration"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Neg_T">
<xs:attribute name="Name" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>The name of the negated pin.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:element name="Negated" type="Neg_T">
<xs:annotation>
<xs:documentation>The negated pins of this part.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="AutomaticTyped_T">
<xs:attribute name="Name" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>The name of the automatic chosen template parameter. Not for InstructionRef</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:element name="AutomaticTyped" type="AutomaticTyped_T"/>
<xs:element name="Part" type="Part_T"/>
<xs:element name="Equation" type="Equation_T"/>
<xs:complexType name="Part_T">
<xs:sequence>
<xs:choice minOccurs="0">
<xs:element ref="Equation" minOccurs="0">
<xs:annotation>
<xs:documentation>The equation of this part. This is only used for the Calculate box.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="Instance" minOccurs="0"/>
</xs:choice>
<xs:group ref="PartSequence_G"/>
</xs:sequence>
<xs:attributeGroup ref="PartAttribute_G"/>
<xs:attribute name="Name" use="required">
<xs:simpleType>
<xs:restriction base="SimaticName_TP">
<xs:minLength value="1"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Version" type="VersionString_TP"/>
<xs:attribute name="DisabledENO" type="xs:boolean" default="false"/>
</xs:complexType>
<xs:attributeGroup name="PartAttribute_G">
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:attributeGroup>
<xs:element name="NameCon" type="NameCon_T"/>
<xs:complexType name="NameCon_T">
<xs:attribute name="UId" type="xs:int" use="required"/>
<xs:attribute name="Name" type="PinName_TE" use="required"/>
</xs:complexType>
<xs:element name="Parts" type="Parts_T"/>
<xs:complexType name="Parts_T">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="Access"/>
<xs:element ref="Part"/>
<xs:element ref="Call"/>
</xs:choice>
</xs:complexType>
<xs:group name="PartSequence_G">
<xs:sequence>
<xs:element ref="TemplateValue" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="AutomaticTyped" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Invisible" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Negated" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="Comment" minOccurs="0"/>
</xs:sequence>
</xs:group>
<xs:simpleType name="PinName_TE">
<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:element name="Wire" type="Wire_T"/>
<xs:complexType name="Wire_T">
<xs:choice maxOccurs="unbounded">
<xs:element ref="Powerrail"/>
<xs:element ref="NameCon"/>
<xs:element ref="IdentCon"/>
<xs:element ref="Openbranch"/>
<xs:element ref="OpenCon"/>
</xs:choice>
<xs:attribute name="UId" type="xs:int" use="required"/>
</xs:complexType>
<xs:element name="Wires" type="Wires_T"/>
<xs:complexType name="Wires_T">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="Wire"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,19 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.Access_v4.xsd"/>
<xs:element name="StructuredText" type="StructuredText_T"/>
<xs:complexType name="StructuredText_T">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice>
<xs:element ref="Access"/>
<xs:element ref="Token"/>
<xs:element ref="Parameter"/>
<xs:element ref="Text"/>
<xs:group ref="Comment_G"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="UId" type="xs:int" use="optional"/>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,482 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.PlcBlocks.CompileUnitCommon_v4.xsd"/>
<xs:element name="StlStatement" type="StlStatement_T"/>
<xs:complexType name="StlStatement_T">
<xs:sequence>
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="LabelDeclaration" minOccurs="0"/>
<xs:sequence>
<xs:element ref="StlToken">
<xs:annotation>
<xs:documentation>missing for empty lines</xs:documentation>
</xs:annotation>
</xs:element>
<xs:group ref="Comment_G" minOccurs="0"/>
</xs:sequence>
<xs:element ref="Access" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="UId" type="xs:int">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:element name="StlToken" type="StlToken_T"/>
<xs:complexType name="StlToken_T">
<xs:sequence>
<xs:element ref="IntegerAttribute" minOccurs="0">
<xs:annotation>
<xs:documentation>for NumBLs. NumBLs is informative</xs:documentation>
</xs:annotation>
</xs:element>
<xs:sequence minOccurs="0">
<xs:group ref="Comment_G" minOccurs="0"/>
<xs:element ref="Token">
<xs:annotation>
<xs:documentation>e.g 0 1 for NOP 0, NOP 1; STW for L STW or DILG for L DILG; only if separated by comment</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:sequence>
<xs:attribute name="UId" type="xs:int" use="optional">
<xs:annotation>
<xs:documentation>Not allowed in STL</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Text" type="STL_TE" use="required"/>
<!--<xs:attribute name="NumBLs" type="xs:int" default="0"/>-->
</xs:complexType>
<xs:element name="StatementList" type="StatementList_T"/>
<xs:complexType name="StatementList_T">
<xs:sequence>
<xs:element ref="StlStatement" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="STL_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="A"/>
<xs:enumeration value="AN"/>
<xs:enumeration value="O"/>
<xs:enumeration value="ON"/>
<xs:enumeration value="X"/>
<xs:enumeration value="XN"/>
<xs:enumeration value="S"/>
<xs:enumeration value="R"/>
<xs:enumeration value="Assign"/>
<xs:enumeration value="Rise"/>
<xs:enumeration value="Fall"/>
<xs:enumeration value="L"/>
<xs:enumeration value="T"/>
<xs:enumeration value="LAR1"/>
<xs:enumeration value="LAR2"/>
<xs:enumeration value="TAR1"/>
<xs:enumeration value="TAR2"/>
<xs:enumeration value="Extend">
<xs:annotation>
<xs:documentation>SE, SV</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Free"/>
<xs:enumeration value="LC"/>
<xs:enumeration value="OffDelay">
<xs:annotation>
<xs:documentation>SF, SA</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Retentive">
<xs:annotation>
<xs:documentation>SS</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="OnDelay">
<xs:annotation>
<xs:documentation>SD, SE</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="Pulse">
<xs:annotation>
<xs:documentation>SP, SI</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CD"/>
<xs:enumeration value="CU"/>
<xs:enumeration value="CALL"/>
<xs:enumeration value="CC"/>
<xs:enumeration value="UC"/>
<xs:enumeration value="OPEN_DB">
<xs:annotation>
<xs:documentation>AUF</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="OPEN_DI">
<xs:annotation>
<xs:documentation>AUF DI</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="LT_I"/>
<xs:enumeration value="LT_R"/>
<xs:enumeration value="LT_D"/>
<xs:enumeration value="LE_I"/>
<xs:enumeration value="LE_R"/>
<xs:enumeration value="LE_D"/>
<xs:enumeration value="EQ_I"/>
<xs:enumeration value="EQ_R"/>
<xs:enumeration value="EQ_D"/>
<xs:enumeration value="GE_I"/>
<xs:enumeration value="GE_R"/>
<xs:enumeration value="GE_D"/>
<xs:enumeration value="GT_I"/>
<xs:enumeration value="GT_R"/>
<xs:enumeration value="GT_D"/>
<xs:enumeration value="NE_I"/>
<xs:enumeration value="NE_R"/>
<xs:enumeration value="NE_D"/>
<xs:enumeration value="JU">
<xs:annotation>
<xs:documentation>SPA</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JC">
<xs:annotation>
<xs:documentation>SPB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JO">
<xs:annotation>
<xs:documentation>SPO</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JZ">
<xs:annotation>
<xs:documentation>SPZ</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JP">
<xs:annotation>
<xs:documentation>SPP</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JM">
<xs:annotation>
<xs:documentation>SPM</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JN">
<xs:annotation>
<xs:documentation>SPN</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JCN">
<xs:annotation>
<xs:documentation>SPBN</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JCB">
<xs:annotation>
<xs:documentation>SPBB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JNB">
<xs:annotation>
<xs:documentation>SPBNB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JBI">
<xs:annotation>
<xs:documentation>SPBI</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JNBI">
<xs:annotation>
<xs:documentation>SPBNI</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JOS">
<xs:annotation>
<xs:documentation>SPS</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JUN">
<xs:annotation>
<xs:documentation>SPU</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JMZ">
<xs:annotation>
<xs:documentation>SPMZ</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="JPZ">
<xs:annotation>
<xs:documentation>SPZ</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="LOOP"/>
<xs:enumeration value="JL"/>
<xs:enumeration value="ADD"/>
<xs:enumeration value="SLD"/>
<xs:enumeration value="SLW"/>
<xs:enumeration value="SRD"/>
<xs:enumeration value="SRW"/>
<xs:enumeration value="SRSD">
<xs:annotation>
<xs:documentation>SSD, SVD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SRSW">
<xs:annotation>
<xs:documentation>SSW, SVW</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="RLD"/>
<xs:enumeration value="RRD"/>
<xs:enumeration value="BLD"/>
<xs:enumeration value="ADDAR1"/>
<xs:enumeration value="ADDAR2"/>
<xs:enumeration value="INC"/>
<xs:enumeration value="DEC"/>
<xs:enumeration value="AW"/>
<xs:enumeration value="OW"/>
<xs:enumeration value="XW"/>
<xs:enumeration value="AD"/>
<xs:enumeration value="OD"/>
<xs:enumeration value="XD"/>
<xs:enumeration value="A_BRACK"/>
<xs:enumeration value="AN_BRACK"/>
<xs:enumeration value="O_BRACK"/>
<xs:enumeration value="ON_BRACK"/>
<xs:enumeration value="X_BRACK"/>
<xs:enumeration value="XN_BRACK"/>
<xs:enumeration value="INV_I">
<xs:annotation>
<xs:documentation>KEW, INV_F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="NEG_I">
<xs:annotation>
<xs:documentation>KZW, NEG_F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="INV_D">
<xs:annotation>
<xs:documentation>KED</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="NEG_D">
<xs:annotation>
<xs:documentation>KZD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="NEG_R">
<xs:annotation>
<xs:documentation>NEG_G, ND</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="ABS_R">
<xs:annotation>
<xs:documentation>ABS_G</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SQRT"/>
<xs:enumeration value="SQR"/>
<xs:enumeration value="LN"/>
<xs:enumeration value="EXP"/>
<xs:enumeration value="SIN"/>
<xs:enumeration value="ASIN"/>
<xs:enumeration value="COS"/>
<xs:enumeration value="ACOS"/>
<xs:enumeration value="TAN"/>
<xs:enumeration value="ATAN"/>
<xs:enumeration value="RLDA"/>
<xs:enumeration value="RRDA"/>
<xs:enumeration value="BTI">
<xs:annotation>
<xs:documentation>DEF</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="ITB">
<xs:annotation>
<xs:documentation>DUF</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="BTD">
<xs:annotation>
<xs:documentation>DED</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DTB">
<xs:annotation>
<xs:documentation>DUD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DTR">
<xs:annotation>
<xs:documentation>FDG</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="RND">
<xs:annotation>
<xs:documentation>GFDN</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="RND_M">
<xs:annotation>
<xs:documentation>GFDM</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="RND_P">
<xs:annotation>
<xs:documentation>GFDP</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="TRUNC"/>
<xs:enumeration value="ITD">
<xs:annotation>
<xs:documentation>FD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CAW">
<xs:annotation>
<xs:documentation>TAW</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CAD">
<xs:annotation>
<xs:documentation>TAD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="TAR1_ACCU1"/>
<xs:enumeration value="TAR2_ACCU1"/>
<xs:enumeration value="ADD_I">
<xs:annotation>
<xs:documentation>+F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SUB_I">
<xs:annotation>
<xs:documentation>-F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MUL_I">
<xs:annotation>
<xs:documentation>xF</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DIV_I">
<xs:annotation>
<xs:documentation>:F</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="ADD_D">
<xs:annotation>
<xs:documentation>+D</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SUB_D">
<xs:annotation>
<xs:documentation>-D</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MUL_D">
<xs:annotation>
<xs:documentation>xD</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DIV_D">
<xs:annotation>
<xs:documentation>:D</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MOD_D"/>
<xs:enumeration value="L_DBLG"/>
<xs:enumeration value="L_DILG"/>
<xs:enumeration value="L_DBNO"/>
<xs:enumeration value="L_DINO"/>
<xs:enumeration value="ADD_R">
<xs:annotation>
<xs:documentation>+G</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SUB_R">
<xs:annotation>
<xs:documentation>-G</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MUL_R">
<xs:annotation>
<xs:documentation>xG</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="DIV_R">
<xs:annotation>
<xs:documentation>:G</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CAC">
<xs:annotation>
<xs:documentation>TAK</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="LEAVE"/>
<xs:enumeration value="PUSH"/>
<xs:enumeration value="POP"/>
<xs:enumeration value="SET"/>
<xs:enumeration value="NEG"/>
<xs:enumeration value="CLR"/>
<xs:enumeration value="BEC">
<xs:annotation>
<xs:documentation>BEB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="BRACKET">
<xs:annotation>
<xs:documentation>)</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="SAVE"/>
<xs:enumeration value="NOP_0"/>
<xs:enumeration value="NOP_1"/>
<xs:enumeration value="MCR_BRACK">
<xs:annotation>
<xs:documentation>MCR(</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="BRACK_MCR">
<xs:annotation>
<xs:documentation>MCR)</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="MCRA"/>
<xs:enumeration value="MCRD"/>
<xs:enumeration value="ENT"/>
<xs:enumeration value="LAR1_ACCU1"/>
<xs:enumeration value="LAR1_AR2"/>
<xs:enumeration value="LAR2_ACCU1"/>
<xs:enumeration value="TAR1_AR2"/>
<xs:enumeration value="CAR">
<xs:annotation>
<xs:documentation>TAR</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="CDB">
<xs:annotation>
<xs:documentation>TDB</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="COMMENT"/>
<xs:enumeration value="EMPTY_LINE"/>
<xs:enumeration value="PSEUDO"/>
<xs:enumeration value="MOVE"/>
<xs:enumeration value="MOVE_BLOCK"/>
<xs:enumeration value="BE">
<xs:annotation>
<xs:documentation>BEA</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="BEU"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

View File

@ -0,0 +1,154 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemaLocation="SW.Common_v3.xsd"/>
<xs:element name="Type">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Action"/>
<xs:enumeration value="Interlock"/>
<xs:enumeration value="Operand"/>
<xs:enumeration value="Position"/>
<xs:enumeration value="Reaction"/>
<xs:enumeration value="MessageText"/>
<xs:enumeration value="MessageError"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="TriggeringStatus" type="xs:boolean"/>
<xs:element name="SupervisedStatus" type="xs:boolean"/>
<xs:element name="SupervisedOperand">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="SubCategory2Number" type="xs:int"/>
<xs:element name="SubCategory1Number" type="xs:int"/>
<xs:element name="Number" type="xs:int"/>
<xs:element name="DelayOperand">
<xs:complexType>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Conditions">
<xs:complexType>
<xs:sequence>
<xs:element ref="Condition" maxOccurs="3"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ConditionOperand">
<xs:complexType>
<xs:attribute name="Number" use="required">
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Condition">
<xs:complexType>
<xs:sequence>
<xs:element ref="ConditionOperand"/>
<xs:element ref="TriggeringStatus"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="CategoryNumber">
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="8"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="BlockTypeSupervisions">
<xs:complexType>
<xs:complexContent>
<xs:extension base="BlockTypeSupervisionsType"/>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="BlockTypeSupervision">
<xs:complexType>
<xs:sequence>
<xs:element ref="SupervisedOperand"/>
<xs:element ref="SupervisedStatus"/>
<xs:element ref="DelayOperand" minOccurs="0"/>
<xs:element ref="Conditions" minOccurs="0"/>
<xs:element ref="CategoryNumber"/>
<xs:element ref="SubCategory1Number" minOccurs="0"/>
<xs:element ref="SubCategory2Number" minOccurs="0"/>
<xs:element ref="SpecificField" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Number" type="xs:int" use="required"/>
<xs:attribute name="Type" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Action"/>
<xs:enumeration value="Interlock"/>
<xs:enumeration value="Operand"/>
<xs:enumeration value="Position"/>
<xs:enumeration value="Reaction"/>
<xs:enumeration value="MessageText"/>
<xs:enumeration value="MessageError"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="AssociatedValues">
<xs:complexType>
<xs:sequence>
<xs:element ref="AssociatedValue" maxOccurs="3"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AssociatedValue">
<xs:complexType>
<xs:sequence>
<xs:element ref="AssociatedValueOperand" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="SpecificFieldText">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element ref="MultiLanguageText"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="SpecificField">
<xs:complexType>
<xs:sequence minOccurs="0">
<xs:element ref="AssociatedValues" minOccurs="0"/>
<xs:element ref="SpecificFieldText" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="BlockTypeSupervisionsType">
<xs:sequence>
<xs:element ref="BlockTypeSupervision" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="AssociatedValueOperand">
<xs:complexType>
<xs:attribute name="Number" use="required">
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

View File

@ -0,0 +1,132 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/Axis/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Motion/Axis/v1"
elementFormDefault="qualified">
<!-- Root element AdditionalData-->
<xs:element name="AdditionalData" type="tns:AdditionalData_T"/>
<!-- Complex type AdditionalData_T-->
<xs:complexType name="AdditionalData_T">
<xs:annotation>
<xs:documentation>Describes additional data, such as Connections, for Axis and ExternalEncoder TOs.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Connection" type="tns:Connection_T" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="SynchronousAxisMasterValues" type="tns:SynchronousAxisMasterValues_T" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type Connection_T-->
<xs:complexType name="Connection_T">
<xs:annotation>
<xs:documentation>Describes a connection of a TO interface.</xs:documentation>
</xs:annotation>
<xs:attribute name="Interface" type="tns:Interface_TE" use="required">
<xs:annotation>
<xs:documentation>Specifies the Interface of the TO that is connected.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="InputAddress" type="xs:nonNegativeInteger" use="optional">
<xs:annotation>
<xs:documentation>Input bit address.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="OutputAddress" type="xs:nonNegativeInteger" use="optional">
<xs:annotation>
<xs:documentation>Output bit address.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="ConnectOption" type="tns:ConnectOption_TE" use="optional" default="Default">
<xs:annotation>
<xs:documentation>Connect option used when the connection has been created.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="SensorIndexInActorTelegram" type="xs:nonNegativeInteger" use="optional">
<xs:annotation>
<xs:documentation>Index of sensor in actor telegram if connected to same telegram.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="PathToDBMember" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Path to a DB member.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="OutputTag" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Name of a connected tag for analog connection.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<!-- Enumeration type Interface_TE-->
<xs:simpleType name="Interface_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Actor"/>
<xs:enumeration value="Sensor"/>
<xs:enumeration value="Sensor[1]"/>
<xs:enumeration value="Sensor[2]"/>
<xs:enumeration value="Sensor[3]"/>
<xs:enumeration value="Sensor[4]"/>
<xs:enumeration value="Torque"/>
<xs:enumeration value="OutputCam"/>
<xs:enumeration value="MeasuringInput"/>
</xs:restriction>
</xs:simpleType>
<!-- Enumeration type ConnectOption_TE-->
<xs:simpleType name="ConnectOption_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="Default"/>
<xs:enumeration value="AllowAllModules"/>
</xs:restriction>
</xs:simpleType>
<!-- Complex type SynchronousAxisMasterValues_T-->
<xs:complexType name="SynchronousAxisMasterValues_T">
<xs:annotation>
<xs:documentation>Contains a list of master values for TO_SynchronousAxis.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="SetPointCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a master value TO that is coupled via set points.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="ActualValueCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a master value TO that is coupled via actual values.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="DelayedCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a master value TO that is coupled via delayed values.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="LeadingAxisProxy" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a master value TO of type LeadingAxisProxy.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- Complex type TechnologicalObjectReference_T-->
<xs:complexType name="TechnologicalObjectReference_T">
<xs:annotation>
<xs:documentation>Describes a reference to a Technological Object.</xs:documentation>
</xs:annotation>
<xs:attribute name="Ref" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the name of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Type" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,97 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2019. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/Kinematics/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Motion/Kinematics/v1"
elementFormDefault="qualified">
<!-- Root element AdditionalData-->
<xs:element name="AdditionalData" type="tns:AdditionalData_T"/>
<!-- Complex type AdditionalData_T-->
<xs:complexType name="AdditionalData_T">
<xs:annotation>
<xs:documentation>Describes additional data, such as connected axes, for Kinematics TOs.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="KinematicsAxis" type="tns:TechnologicalObjectReferenceWithIndex_T" minOccurs="0" maxOccurs="4"/>
<xs:element name="ConveyorTrackingLeadingValues" type="tns:ConveyorTrackingLeadingValues_T" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type TechnologicalObjectReferenceWithIndex_T-->
<xs:complexType name="TechnologicalObjectReferenceWithIndex_T">
<xs:annotation>
<xs:documentation>Describes a reference to a Technological Object.</xs:documentation>
</xs:annotation>
<xs:attribute name="Index" type="tns:Integer1to4_T" use="required">
<xs:annotation>
<xs:documentation>Specifies the name of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Ref" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the name of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Type" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<!-- Simple type Integer1to4_T-->
<xs:simpleType name="Integer1to4_T">
<xs:restriction base="xs:integer">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="4"/>
</xs:restriction>
</xs:simpleType>
<!-- Complex type ConveyorTrackingLeadingValues_T-->
<xs:complexType name="ConveyorTrackingLeadingValues_T">
<xs:annotation>
<xs:documentation>Contains a list of leading values for conveyor tracking.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="SetPointCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a leading value TO that is coupled via set points.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="ActualValueCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a leading value TO that is coupled via actual values.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="DelayedCoupling" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a leading value TO that is coupled via delayed values.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="LeadingAxisProxy" type="tns:TechnologicalObjectReference_T" minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Describes a reference to a leading value TO of type LeadingAxisProxy.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<!-- Complex type TechnologicalObjectReference_T-->
<xs:complexType name="TechnologicalObjectReference_T">
<xs:annotation>
<xs:documentation>Describes a reference to a Technological Object.</xs:documentation>
</xs:annotation>
<xs:attribute name="Ref" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the name of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Type" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Specifies the type of the referenced Technological Object.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,45 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/MeasuringInput/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Motion/MeasuringInput/v1"
elementFormDefault="qualified">
<!-- Root element AdditionalData-->
<xs:element name="AdditionalData" type="tns:AdditionalData_T"/>
<!-- Complex type AdditionalData_T-->
<xs:complexType name="AdditionalData_T">
<xs:annotation>
<xs:documentation>Describes additional data, such as Connections, for MeasuringInput TOs.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Connection" type="tns:Connection_T" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type Connection_T-->
<xs:complexType name="Connection_T">
<xs:annotation>
<xs:documentation>Describes a connection of a TO interface.</xs:documentation>
</xs:annotation>
<xs:attribute name="Interface" type="tns:Interface_TE" use="required">
<xs:annotation>
<xs:documentation>Specifies the Interface of the TO that is connected.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="InputAddress" type="xs:nonNegativeInteger" use="required">
<xs:annotation>
<xs:documentation>Input bit address.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<!-- Enumeration type Interface_TE-->
<xs:simpleType name="Interface_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="MeasuringInput"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

View File

@ -0,0 +1,49 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/OutputCam/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Motion/OutputCam/v1"
elementFormDefault="qualified">
<!-- Root element AdditionalData-->
<xs:element name="AdditionalData" type="tns:AdditionalData_T"/>
<!-- Complex type AdditionalData_T-->
<xs:complexType name="AdditionalData_T">
<xs:annotation>
<xs:documentation>Describes additional data, such as Connections, for OutputCam and CamTrack TOs.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Connection" type="tns:Connection_T" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type Connection_T-->
<xs:complexType name="Connection_T">
<xs:annotation>
<xs:documentation>Describes a connection of a TO interface.</xs:documentation>
</xs:annotation>
<xs:attribute name="Interface" type="tns:Interface_TE" use="required">
<xs:annotation>
<xs:documentation>Specifies the Interface of the TO that is connected.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="OutputAddress" type="xs:nonNegativeInteger" use="optional">
<xs:annotation>
<xs:documentation>Output bit address.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="OutputTag" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Name of a connected tag.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<!-- Enumeration type Interface_TE-->
<xs:simpleType name="Interface_TE">
<xs:restriction base="xs:string">
<xs:enumeration value="OutputCam"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Parameters/v1"
xmlns:tns="http://www.siemens.com/automation/Openness/SW/Parameters/v1"
elementFormDefault="qualified">
<!-- Root element Parameters-->
<xs:element name="Parameters" type="tns:Parameters_T"/>
<!-- Complex type Parameters_T-->
<xs:complexType name="Parameters_T">
<xs:annotation>
<xs:documentation>Describes a list of parameters.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Parameter" type="tns:Parameter_T" minOccurs="0" maxOccurs="unbounded"/>
<xs:any namespace="##other" processContents="strict" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<!-- Complex type Parameter_T-->
<xs:complexType name="Parameter_T">
<xs:annotation>
<xs:documentation>Describes a single parameter, having Name and Value. If the Value is missing, the default value of the Parameter is used.</xs:documentation>
</xs:annotation>
<xs:attribute name="Name" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Name of the Parameter</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="Value" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Value of the Parameter</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:schema>

View File

@ -0,0 +1,345 @@
<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright © Siemens AG 2008-2018. All rights reserved. -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.siemens.com/automation/Openness/SW/Motion/Cam/v1"
xmlns:cam="http://www.siemens.com/automation/Openness/SW/Motion/Cam/v1"
elementFormDefault="qualified">
<!-- Global types -->
<xs:simpleType name="ProfileContinuity">
<xs:restriction base="xs:string">
<xs:enumeration value="Position"/>
<xs:enumeration value="Velocity"/>
<xs:enumeration value="Acceleration"/>
<xs:enumeration value="Jerk"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ElementContinuity">
<xs:restriction base="xs:string">
<xs:enumeration value="AsProfile"/>
<xs:enumeration value="Position"/>
<xs:enumeration value="Velocity"/>
<xs:enumeration value="Acceleration"/>
<xs:enumeration value="Jerk"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProfileOptimizationGoal">
<xs:restriction base="xs:string">
<xs:enumeration value="None"/>
<xs:enumeration value="Velocity"/>
<xs:enumeration value ="Acceleration"/>
<xs:enumeration value ="Jerk"/>
<xs:enumeration value ="DynamicMoment"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ElementOptimizationGoal">
<xs:restriction base="xs:string">
<xs:enumeration value="AsProfile"/>
<xs:enumeration value="None"/>
<xs:enumeration value="Velocity"/>
<xs:enumeration value="Acceleration"/>
<xs:enumeration value="Jerk"/>
<xs:enumeration value="DynamicMoment"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ValueMode">
<xs:restriction base="xs:string">
<xs:enumeration value="Relative"/>
<xs:enumeration value="Absolute"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ProfileInterpolationMode">
<xs:restriction base="xs:string">
<xs:enumeration value="Linear"/>
<xs:enumeration value="CubicSpline"/>
<xs:enumeration value="BezierSpline"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="BoundaryConditions">
<xs:restriction base="xs:string">
<xs:enumeration value="NoConstraint"/>
<xs:enumeration value="FirstDerivative"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="DefinitionRange">
<xs:attribute name="Start" type="xs:float"/>
<xs:attribute name="End" type="xs:float"/>
</xs:complexType>
<xs:complexType name="TrigonometricValues">
<xs:attribute name="Amplitude" type="xs:float" default="1" />
<!-- two of four are required and at least StartPhase or EndPhase is required -->
<xs:attribute name="StartPhase" type="xs:float" default="0" />
<xs:attribute name="EndPhase" type="xs:float" default="6.2831853071795862" />
<xs:attribute name="Frequency" type="xs:float" default="1" />
<xs:attribute name="PeriodLength" type="xs:float" default="1" />
</xs:complexType>
<xs:complexType name="SegmentBase">
<xs:attribute name="StartX" type="xs:float" use="required" />
<xs:attribute name="EndX" type="xs:float" use="required" />
</xs:complexType>
<xs:simpleType name="PointGroupApproximationMode">
<xs:restriction base="xs:string">
<xs:enumeration value="PointApproximation" />
<xs:enumeration value="SegmentApproximation" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="PointGroupInterpolationMode">
<xs:restriction base="xs:string">
<xs:enumeration value="CubicSpline" />
<xs:enumeration value="BezierSpline" />
</xs:restriction>
</xs:simpleType>
<!-- Due to multiple usage, we place that element type explicitly here -->
<xs:complexType name="PointElementType">
<xs:attribute name="X" type="xs:float" use="required" />
<xs:attribute name="Y" type="xs:float" use="required" />
<xs:attribute name="Velocity" type="xs:float" />
<xs:attribute name="Acceleration" type="xs:float" />
<xs:attribute name="Jerk" type="xs:float" />
</xs:complexType>
<!-- Begin of our actual nodes -->
<xs:element name="ProfileData">
<xs:complexType>
<xs:sequence>
<xs:element name="GeneralConfiguration" minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<!-- Requires start < end validity - default is [0;360] -->
<xs:element name="DesignLeadingRange" type="cam:DefinitionRange" minOccurs="1" maxOccurs="1" />
<!-- Requires start < end validity - default is [-1;1] -->
<xs:element name="DesignFollowingRange" type="cam:DefinitionRange" minOccurs="1" maxOccurs="1" />
</xs:sequence>
<!-- Attributes -->
<xs:attribute name="StandardContinuity" type="cam:ProfileContinuity" default="Acceleration" />
<xs:attribute name="StandardOptimizationGoal" type="cam:ProfileOptimizationGoal" default="None" />
<xs:attribute name="InterpolationMode" type="cam:ProfileInterpolationMode" default="CubicSpline" />
<xs:attribute name="BoundaryConditions" type="cam:BoundaryConditions" default="NoConstraint" />
</xs:complexType>
</xs:element>
<!-- The node of listed elements -->
<xs:element name="Elements" minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="Point" type="cam:PointElementType" />
<xs:element name="Line">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<!-- Two out of three are required here -->
<xs:attribute name="StartY" type="xs:float" />
<xs:attribute name="EndY" type="xs:float" />
<xs:attribute name="Gradient" type="xs:float" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="Polynomial">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<xs:sequence>
<!-- With or without trigonometric portion ? If node doesn't exist, we simply use a non-trig. polynomial -->
<!-- 2 out of 4 : startPhase, endPhase, frequency, periodLength -->
<xs:element name="TrigonometricValues" type="cam:TrigonometricValues" minOccurs="0" maxOccurs="1" />
<!-- For V3, one of these nodes is required. -->
<xs:choice>
<xs:element name="Coefficients" >
<xs:complexType>
<xs:attribute name="C0" type="xs:float" default="0" />
<xs:attribute name="C1" type="xs:float" default="0" />
<xs:attribute name="C2" type="xs:float" default="0" />
<xs:attribute name="C3" type="xs:float" default="0" />
<xs:attribute name="C4" type="xs:float" default="0" />
<xs:attribute name="C5" type="xs:float" default="0" />
<xs:attribute name="C6" type="xs:float" default="0" />
</xs:complexType>
</xs:element>
<xs:element name="Constraints" >
<xs:complexType>
<xs:attribute name="LeftValue" type="xs:float" />
<xs:attribute name="RightValue" type="xs:float" />
<xs:attribute name="LeftVelocity" type="xs:float" />
<xs:attribute name="RightVelocity" type="xs:float" />
<xs:attribute name="LeftAcceleration" type="xs:float" />
<xs:attribute name="RightAcceleration" type="xs:float" />
<!-- For V3, only one of these three parameters is allowed and lambda is always assumed to be absolute there. -->
<xs:attribute name="LeftJerk" type="xs:float" />
<xs:attribute name="RightJerk" type="xs:float" />
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="VDITransition">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<!-- The VDI-rules we know so far -->
<!-- If a VDI-rule occurs, the transition is handled as a VDI transition -->
<!-- For V3, lambda is always expected to be absolute -> mode is ignored there. -->
<xs:choice minOccurs="1" maxOccurs="1">
<xs:element name="DoubleHarmonicTransition" />
<xs:element name="InclinedSine">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="Linear" />
<xs:element name="HarmonicCombination">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="ModifiedAccelerationTrapezoid">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="ModifiedSine">
<xs:complexType>
<!-- Choose one of three -->
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="Ca" type="xs:float" />
<xs:attribute name="CaStar" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="Polynomial">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="QuadraticParabola">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="Sine">
<xs:complexType>
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
<xs:element name="SineLineCombination">
<xs:complexType>
<!-- Both parameters can be used -->
<xs:attribute name="Lambda" type="xs:float" />
<xs:attribute name="C" type="xs:float" />
<xs:attribute name="LambdaMode" type="cam:ValueMode" default="Absolute" />
</xs:complexType>
</xs:element>
</xs:choice>
<xs:attribute name="LeftContinuity" type="cam:ElementContinuity" default="AsProfile" />
<xs:attribute name="RightContinuity" type="cam:ElementContinuity" default="AsProfile" />
<xs:attribute name="OptimizationGoal" type="cam:ElementOptimizationGoal" default="AsProfile" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="InverseSine">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<xs:attribute name="InterpolationPointCount" type="xs:integer" default="32" />
<xs:attribute name="MaxFollowingValueTolerance" type="xs:float" default="0.01" />
<xs:attribute name="MathStartX" type="xs:float" default="-0.95" />
<xs:attribute name="MathEndX" type="xs:float" default="0.95" />
<xs:attribute name="Minimum" type="xs:float" />
<xs:attribute name="Maximum" type="xs:float" />
<xs:attribute name="Inversed" type="xs:boolean" default="false" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="Sine">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<xs:attribute name="Amplitude" type="xs:float" default="1" />
<!-- two of four are required and at least StartPhase or EndPhase is required -->
<xs:attribute name="StartPhase" type="xs:float" default="0" />
<xs:attribute name="EndPhase" type="xs:float" default="6.2831853071795862" />
<xs:attribute name="Frequency" type="xs:float" default="1" />
<xs:attribute name="PeriodLength" type="xs:float" default="1" />
<!-- Two out of three are required here -->
<xs:attribute name="Inclination" type="xs:float" default="0" />
<xs:attribute name="StartOffset" type="xs:float" default="0" />
<xs:attribute name="EndOffset" type="xs:float" default="0" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="PointGroup">
<xs:complexType>
<xs:complexContent>
<xs:extension base="cam:SegmentBase">
<!-- Allow points to be sub-elements of the group-->
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="Point" type="cam:PointElementType" />
</xs:sequence>
<xs:attribute name="ApproximationDataPoints" type="xs:integer" default="32" />
<xs:attribute name="ApproximationTolerance" type="xs:float" default="0.01" />
<xs:attribute name="LeadingValueMode" type="cam:ValueMode" default="Absolute" />
<xs:attribute name="FollowingValueMode" type="cam:ValueMode" default="Absolute" />
<xs:attribute name="ApproximationMode" type="cam:PointGroupApproximationMode" default="SegmentApproximation" />
<xs:attribute name="InterpolationMode" type="cam:PointGroupInterpolationMode" default="CubicSpline" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

144
create_processor_files.py Normal file
View File

@ -0,0 +1,144 @@
# -*- coding: utf-8 -*-
import os
import sys
import re
import argparse
# Directorio donde se crearán los archivos de procesador
PROCESSORS_DIR = "processors"
# Cabecera estándar para añadir a cada nuevo archivo
FILE_HEADER = """# -*- coding: utf-8 -*-
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
"""
# Pie de página estándar con la función get_processor_info de plantilla
def get_file_footer(func_name):
"""Generates the standard footer with a placeholder get_processor_info."""
type_name_guess = func_name.replace('process_', '')
return f"""
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
\"\"\"Returns the type name and processing function for this module.\"\"\"
# TODO: Adjust the type_name if needed (e.g., call, edge_detector, comparison, math).
# TODO: Return a list if this module handles multiple types (e.g., PBox/NBox, FC/FB).
type_name = "{type_name_guess}" # Basic guess
return {{'type_name': type_name, 'processor_func': {func_name}}}
"""
def extract_and_create_processors(source_py_file):
"""
Extracts top-level functions starting with 'process_' from the source file
and creates individual processor files in the PROCESSORS_DIR, copying
the entire function body until the next top-level definition.
"""
if not os.path.exists(source_py_file):
print(f"Error: Source file not found: '{source_py_file}'")
return
print(f"Reading source file: '{source_py_file}'")
try:
with open(source_py_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
except Exception as e:
print(f"Error reading source file: {e}")
return
os.makedirs(PROCESSORS_DIR, exist_ok=True)
print(f"Ensuring '{PROCESSORS_DIR}' directory exists.")
print("Searching for processor functions (def process_...):")
processor_functions = [] # Store tuples of (name, start_line_index, end_line_index)
current_func_start = -1
current_func_name = None
# Pattern to find ANY top-level function definition
any_func_def_pattern = re.compile(r"^def\s+(\w+)\s*\(")
# Pattern specific to processor functions
process_func_def_pattern = re.compile(r"^def\s+(process_\w+)\s*\(")
# First pass: Identify start and end lines of all top-level functions
for i, line in enumerate(lines):
match = any_func_def_pattern.match(line)
if match:
# Found a new top-level function definition
if current_func_name is not None:
# Mark the end of the *previous* function
# Only add if it was a 'process_' function
if current_func_name.startswith("process_"):
processor_functions.append((current_func_name, current_func_start, i))
# Start tracking the new function
current_func_name = match.group(1)
current_func_start = i
# Add the last function found in the file (if it was a process_ function)
if current_func_name is not None and current_func_name.startswith("process_"):
processor_functions.append((current_func_name, current_func_start, len(lines)))
# Second pass: Create files using the identified line ranges
processor_count = 0
if not processor_functions:
print("\nWarning: No functions starting with 'process_' found at the top level.")
return
print(f"Found {len(processor_functions)} potential processor functions.")
for func_name, start_idx, end_idx in processor_functions:
print(f" - Processing: {func_name} (lines {start_idx+1}-{end_idx})")
func_lines = lines[start_idx:end_idx] # Extract lines for this function
# Remove trailing blank lines from the extracted block, often happens before next def
while func_lines and func_lines[-1].strip() == "":
func_lines.pop()
create_processor_file(func_name, func_lines)
processor_count += 1
print(f"\nFinished processing. Attempted to create/check {processor_count} processor files in '{PROCESSORS_DIR}'.")
def create_processor_file(func_name, func_lines):
"""Creates the individual processor file if it doesn't exist."""
target_filename = f"{func_name}.py"
target_filepath = os.path.join(PROCESSORS_DIR, target_filename)
if os.path.exists(target_filepath):
print(f" * Skipping: '{target_filename}' already exists.")
return
print(f" * Creating: '{target_filename}'...")
try:
with open(target_filepath, 'w', encoding='utf-8') as f:
f.write(FILE_HEADER)
# Write the function lines, ensuring consistent newline endings
for line in func_lines:
f.write(line.rstrip() + '\n')
f.write(get_file_footer(func_name))
except Exception as e:
print(f" Error writing file '{target_filename}': {e}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Extracts 'process_*' functions from a source Python file "
"and creates individual processor files."
)
parser.add_argument(
"source_file",
default="x2_process.py", # Valor por defecto
nargs='?', # Hacerlo opcional para que use el default
help="Path to the source Python file (default: x2_process.py)"
)
args = parser.parse_args()
extract_and_create_processors(args.source_file)

0
processors/__init__.py Normal file
View File

75
processors/process_add.py Normal file
View File

@ -0,0 +1,75 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_add(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
en_input = instruction["inputs"].get("en")
en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
if en_scl is None or in1_scl is None or in2_scl is None:
return False
target_scl = get_target_scl_name(
instruction, "out", network_id, default_to_temp=True
)
if target_scl is None:
print(f"Error: Sin destino ADD {instr_uid}")
instruction["scl"] = f"// ERROR: Add {instr_uid} sin destino"
instruction["type"] += "_error"
return True
# Formatear operandos si son variables
op1 = (
format_variable_name(in1_scl)
if in1_info and in1_info.get("type") == "variable"
else in1_scl
)
op2 = (
format_variable_name(in2_scl)
if in2_info and in2_info.get("type") == "variable"
else in2_scl
)
# Añadir paréntesis si es necesario
op1 = f"({op1})" if " " in op1 and not op1.startswith("(") else op1
op2 = f"({op2})" if " " in op2 and not op2.startswith("(") else op2
scl_core = f"{target_scl} := {op1} + {op2};"
scl_final = (
f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
)
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = target_scl
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
return True
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador Add."""
return {'type_name': 'add', 'processor_func': process_add, 'priority': 4}

View File

@ -0,0 +1,112 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_blkmov(instruction, network_id, scl_map, access_map, data):
"""
Genera SCL usando BLKMOV directamente como nombre de función,
sin COUNT y con formato específico, según solicitud del usuario.
ADVERTENCIA: Es MUY PROBABLE que esto NO compile en TIA Portal estándar,
ya que BLKMOV no es una función SCL y MOVE_BLK requiere COUNT.
"""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False # Ya procesado o con error
# --- Obtener Entradas ---
en_input = instruction["inputs"].get("en")
en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
srcblk_info = instruction["inputs"].get("SRCBLK")
# ¡IMPORTANTE! Obtenemos el nombre RAW antes de formatearlo para usarlo como pide el usuario
raw_srcblk_name = srcblk_info.get("name") if srcblk_info else None
# Verificar dependencias de entrada (solo necesitamos que EN esté resuelto)
if en_scl is None:
return False # Dependencia EN no lista
if raw_srcblk_name is None:
print(f"Error: BLKMOV {instr_uid} sin información válida para SRCBLK.")
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin SRCBLK válido."
instruction["type"] += "_error"
return True
# --- Obtener Destinos (Salidas) ---
# RET_VAL (Usamos get_target_scl_name para manejar variables temporales si es necesario)
retval_target_scl = get_target_scl_name(
instruction, "RET_VAL", network_id, default_to_temp=True
)
if retval_target_scl is None:
print(f"Error: BLKMOV {instr_uid} sin destino claro para RET_VAL.")
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin destino RET_VAL"
instruction["type"] += "_error"
return True
# DSTBLK (Obtenemos el nombre RAW para usarlo como pide el usuario)
raw_dstblk_name = None
dstblk_output_list = instruction.get("outputs", {}).get("DSTBLK", [])
if dstblk_output_list and isinstance(dstblk_output_list, list) and len(dstblk_output_list) == 1:
dest_access = dstblk_output_list[0]
if dest_access.get("type") == "variable":
raw_dstblk_name = dest_access.get("name") # Nombre raw del JSON
else:
print(f"Advertencia: Destino DSTBLK de BLKMOV {instr_uid} no es una variable (Tipo: {dest_access.get('type')}).")
else:
print(f"Error: No se encontró un destino único y válido para DSTBLK en BLKMOV {instr_uid}.")
if raw_dstblk_name is None:
instruction["scl"] = f"// ERROR: BLKMOV {instr_uid} sin destino DSTBLK válido."
instruction["type"] += "_error"
return True
# --- Formateo especial para SRCBLK/DSTBLK como pidió el usuario ---
# Asume formato "DB".Variable o "Struct".Variable del JSON y lo mantiene
# (Esto anula la limpieza normal de format_variable_name para estos parámetros)
srcblk_final_str = raw_srcblk_name if raw_srcblk_name else "_ERROR_SRC_"
dstblk_final_str = raw_dstblk_name if raw_dstblk_name else "_ERROR_DST_"
# --- Generar SCL Exacto Solicitado ---
scl_core = (
f"{retval_target_scl} := BLKMOV(SRCBLK := {srcblk_final_str}, "
f"DSTBLK => {dstblk_final_str}); "
f"// ADVERTENCIA: BLKMOV usado directamente, probablemente no compile!"
)
# Añadir condición EN (usando la representación SCL obtenida para EN)
scl_final = (
f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
)
# --- Actualizar Instrucción y Mapa SCL ---
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
# Propagar ENO (igual que EN)
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
# Propagar el valor de retorno (el contenido de la variable asignada a RET_VAL)
map_key_ret_val = (network_id, instr_uid, "RET_VAL")
scl_map[map_key_ret_val] = retval_target_scl # El valor es lo que sea que se asigne
return True
# ... (Asegúrate de que esta función está registrada en processor_map como antes) ...
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador BLKMOV."""
# Asumiendo que 'BLKMOV' es el type en el JSON simplificado
return {'type_name': 'blkmov', 'processor_func': process_blkmov, 'priority': 6}

141
processors/process_call.py Normal file
View File

@ -0,0 +1,141 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_call(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"]
instr_type = instruction.get("type", "") # Usar get con default
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
block_name = instruction.get("block_name", f"UnknownCall_{instr_uid}")
block_type = instruction.get("block_type") # FC, FB
instance_db = instruction.get("instance_db") # Nombre del DB de instancia (para FB)
# Formatear nombres
block_name_scl = format_variable_name(block_name)
instance_db_scl = format_variable_name(instance_db) if instance_db else None
# --- Manejo de EN ---
en_input = instruction["inputs"].get("en")
en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
if en_scl is None:
return False # Dependencia EN no resuelta
# --- Procesar Parámetros de Entrada/Salida ---
# Necesitamos iterar sobre los pines definidos en la interfaz del bloque llamado.
# Esta información no está directamente en la instrucción 'Call' del JSON simplificado.
# ¡Limitación! Sin la interfaz del bloque llamado, solo podemos manejar EN/ENO
# y asumir una llamada sin parámetros o con parámetros conectados implícitamente.
# Solución temporal: Buscar conexiones en 'inputs' y 'outputs' que NO sean 'en'/'eno'
# y construir la llamada basándose en eso. Esto es muy heurístico.
scl_call_params = []
processed_inputs = {"en"} # Marcar 'en' como ya procesado
for pin_name, source_info in instruction.get("inputs", {}).items():
if pin_name not in processed_inputs:
param_scl = get_scl_representation(
source_info, network_id, scl_map, access_map
)
if param_scl is None:
# print(f"DEBUG: Call {instr_uid} esperando parámetro de entrada {pin_name}")
return False # Dependencia de parámetro no resuelta
# Formatear si es variable
param_scl_formatted = (
format_variable_name(param_scl)
if source_info.get("type") == "variable"
else param_scl
)
scl_call_params.append(
f"{format_variable_name(pin_name)} := {param_scl_formatted}"
)
processed_inputs.add(pin_name)
# Procesar parámetros de salida (asignaciones después de la llamada o pasados como VAR_IN_OUT/VAR_OUTPUT)
# Esto es aún más complejo. SCL normalmente asigna salidas después o usa punteros/referencias.
# Simplificación: Asumir que las salidas se manejan por asignación posterior si es necesario,
# o que son VAR_OUTPUT y se acceden como instancia.salida.
# Por ahora, no generamos asignaciones explícitas para las salidas aquí.
# --- Construcción de la Llamada SCL ---
scl_call_body = ""
param_string = ", ".join(scl_call_params)
if block_type == "FB":
if not instance_db_scl:
print(
f"Error: Llamada a FB '{block_name_scl}' (UID {instr_uid}) sin DB de instancia especificado."
)
instruction["scl"] = f"// ERROR: FB Call {block_name_scl} sin instancia"
instruction["type"] = "Call_FB_error"
return True # Procesado con error
# Llamada a FB con DB de instancia
scl_call_body = f"{instance_db_scl}({param_string});"
elif block_type == "FC":
# Llamada a FC
scl_call_body = f"{block_name_scl}({param_string});"
else:
print(
f"Advertencia: Tipo de bloque no soportado para Call UID {instr_uid}: {block_type}"
)
scl_call_body = f"// ERROR: Call a bloque tipo '{block_type}' no soportado: {block_name_scl}"
instruction["type"] = f"Call_{block_type}_error" # Marcar como error parcial
# --- Aplicar Condición EN ---
scl_final = ""
if en_scl != "TRUE":
# Indentar la llamada dentro del IF
indented_call = "\n".join([f" {line}" for line in scl_call_body.splitlines()])
scl_final = f"IF {en_scl} THEN\n{indented_call}\nEND_IF;"
else:
scl_final = scl_call_body
# --- Actualizar JSON y Mapa SCL ---
instruction["scl"] = scl_final
instruction["type"] = (
f"Call_{block_type}_scl"
if "_error" not in instruction["type"]
else instruction["type"]
)
# Actualizar scl_map con el estado ENO (igual a EN para llamadas simples sin manejo explícito de ENO)
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
# Propagar valores de salida (si pudiéramos determinarlos)
# Ejemplo: Si supiéramos que hay una salida 'Out1' de tipo INT
# map_key_out1 = (network_id, instr_uid, "Out1")
# if block_type == "FB" and instance_db_scl:
# scl_map[map_key_out1] = f"{instance_db_scl}.Out1" # Acceso a salida de instancia
# else:
# # Para FCs, necesitaríamos una variable temporal o asignación explícita
# temp_out1 = generate_temp_var_name(network_id, instr_uid, "Out1")
# # Modificar scl_call_body para incluir la asignación: Out1 => temp_out1
# scl_map[map_key_out1] = temp_out1
return True
# --- Procesador de Temporizadores (TON, TOF) ---
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para las llamadas a FC y FB."""
# Esta función maneja tanto FC como FB. El despachador en x2_process.py
# usará 'call_fc' o 'call_fb' como clave basada en block_type.
return [
{'type_name': 'call_fc', 'processor_func': process_call, 'priority': 6},
{'type_name': 'call_fb', 'processor_func': process_call, 'priority': 6}
]

View File

@ -0,0 +1,79 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_coil(instruction, network_id, scl_map, access_map, data):
"""Genera la asignación para Coil. Si la entrada viene de PBox/NBox,
añade la actualización de memoria del flanco DESPUÉS de la asignación."""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
coil_input_info = instruction["inputs"].get("in")
operand_info = instruction["inputs"].get("operand")
in_rlo_scl = get_scl_representation(coil_input_info, network_id, scl_map, access_map)
operand_scl = get_scl_representation(operand_info, network_id, scl_map, access_map)
if in_rlo_scl is None or operand_scl is None: return False
if not (operand_info and operand_info.get("type") == "variable"):
instruction["scl"] = f"// ERROR: Coil {instr_uid} operando no es variable o falta info"
instruction["type"] = instr_type + "_error"
return True
operand_scl_formatted = format_variable_name(operand_scl)
if in_rlo_scl == "(TRUE)": in_rlo_scl = "TRUE"
elif in_rlo_scl == "(FALSE)": in_rlo_scl = "FALSE"
# Generar la asignación SCL principal de la bobina
scl_assignment = f"{operand_scl_formatted} := {in_rlo_scl};"
scl_final = scl_assignment # Inicializar SCL final
# --- Lógica para añadir actualización de memoria de flancos ---
mem_update_scl_combined = None
if isinstance(coil_input_info, dict) and coil_input_info.get("type") == "connection":
source_uid = coil_input_info.get("source_instruction_uid")
source_pin = coil_input_info.get("source_pin")
# Buscar la instrucción fuente PBox/NBox
source_instruction = None
network_logic = next((net["logic"] for net in data["networks"] if net["id"] == network_id), [])
for instr in network_logic:
if instr.get("instruction_uid") == source_uid:
source_instruction = instr
break
if source_instruction:
source_type = source_instruction.get("type","").replace('_scl','').replace('_error','')
# Si la fuente es PBox o NBox y tiene el campo temporal con la actualización
if source_type in ["PBox", "NBox"] and '_edge_mem_update_scl' in source_instruction:
mem_update_scl_combined = source_instruction.get('_edge_mem_update_scl') # Obtener update+comment
if mem_update_scl_combined:
# Añadir la actualización DESPUÉS de la asignación de la bobina, USANDO \n
scl_final = f"{scl_assignment}\n{mem_update_scl_combined}"
# Marcar la instrucción PBox/NBox para que x3 no escriba su SCL (que ahora está vacío/comentario)
source_instruction['scl'] = f"// Logic moved to Coil {instr_uid}" # Actualizar PBox/NBox SCL
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
return True
# EN x2_process.py, junto a otras funciones process_xxx
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador Coil."""
return {'type_name': 'coil', 'processor_func': process_coil, 'priority': 3}

View File

@ -0,0 +1,81 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_comparison(instruction, network_id, scl_map, access_map, data):
"""
Genera la expresión SCL para Comparadores (GT, LT, GE, LE, NE).
El resultado se propaga por scl_map['out'].
"""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"] # GT, LT, GE, LE, NE
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
# Mapa de tipos a operadores SCL
op_map = {"GT": ">", "LT": "<", "GE": ">=", "LE": "<=", "NE": "<>"}
scl_operator = op_map.get(instr_type)
if not scl_operator:
instruction["scl"] = f"// ERROR: Tipo de comparación no soportado: {instr_type}"
instruction["type"] += "_error"
return True
# Obtener operandos
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
if in1_scl is None or in2_scl is None:
return False # Dependencias no listas
# Formatear operandos si son variables
op1 = format_variable_name(in1_scl) if in1_info and in1_info.get("type") == "variable" else in1_scl
op2 = format_variable_name(in2_scl) if in2_info and in2_info.get("type") == "variable" else in2_scl
# Añadir paréntesis si contienen espacios (poco probable tras formatear)
op1 = f"({op1})" if " " in op1 and not op1.startswith("(") else op1
op2 = f"({op2})" if " " in op2 and not op2.startswith("(") else op2
comparison_scl = f"{op1} {scl_operator} {op2}"
# Guardar resultado en el mapa para 'out'
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = f"({comparison_scl})" # Poner paréntesis por seguridad
# Manejar entrada 'pre'/RLO -> ENO (como en EQ)
pre_input = instruction["inputs"].get("pre") # Asumir 'pre' como en EQ
en_scl = get_scl_representation(pre_input, network_id, scl_map, access_map) if pre_input else "TRUE"
if en_scl is None:
return False # Dependencia 'pre'/'en' no lista
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
instruction["scl"] = f"// Comparison {instr_type} {instr_uid}: {comparison_scl}"
instruction["type"] = instr_type + SCL_SUFFIX
return True
# --- Procesador de Matemáticas (ADD ya existe, añadir otros) ---
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para los comparadores (excepto EQ)."""
# Esta función maneja múltiples tipos de comparación.
return [
{'type_name': 'gt', 'processor_func': process_comparison, 'priority': 2}, # >
{'type_name': 'lt', 'processor_func': process_comparison, 'priority': 2}, # <
{'type_name': 'ge', 'processor_func': process_comparison, 'priority': 2}, # >=
{'type_name': 'le', 'processor_func': process_comparison, 'priority': 2}, # <=
{'type_name': 'ne', 'processor_func': process_comparison, 'priority': 2} # <>
]

View File

@ -0,0 +1,73 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_contact(instruction, network_id, scl_map, access_map, data):
"""Traduce Contact (normal o negado) a una expresión booleana SCL."""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
# --- INICIO LEER NEGACIÓN ---
# Verificar si el pin 'operand' está marcado como negado en el JSON
is_negated = instruction.get("negated_pins", {}).get("operand", False)
# --- FIN LEER NEGACIÓN ---
# print(f"DEBUG: Intentando procesar CONTACT{' (N)' if is_negated else ''} - UID: {instr_uid} en Red: {network_id}")
in_input = instruction["inputs"].get("in")
in_rlo_scl = (
"TRUE"
if in_input is None
else get_scl_representation(in_input, network_id, scl_map, access_map)
)
operand_scl = get_scl_representation(
instruction["inputs"].get("operand"), network_id, scl_map, access_map
)
if in_rlo_scl is None or operand_scl is None:
return False
# Usar is_negated para aplicar NOT
term = f"NOT {operand_scl}" if is_negated else operand_scl
if not (term.startswith('"') and term.endswith('"')):
# Añadir paréntesis si es NOT o si contiene espacios/operadores
if is_negated or (
" " in term and not (term.startswith("(") and term.endswith(")"))
):
term = f"({term})"
new_rlo_scl = (
term
if in_rlo_scl == "TRUE"
else (
f"({in_rlo_scl}) AND {term}"
if ("AND" in in_rlo_scl or "OR" in in_rlo_scl)
and not (in_rlo_scl.startswith("(") and in_rlo_scl.endswith(")"))
else f"{in_rlo_scl} AND {term}"
)
)
map_key = (network_id, instr_uid, "out")
scl_map[map_key] = new_rlo_scl
instruction["scl"] = f"// RLO: {new_rlo_scl}"
instruction["type"] = instr_type + SCL_SUFFIX
return True
# --- process_edge_detector MODIFICADA ---
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador Contact."""
return {'type_name': 'contact', 'processor_func': process_contact, 'priority': 1}

View File

@ -0,0 +1,81 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_convert(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
en_input = instruction["inputs"].get("en")
en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
in_info = instruction["inputs"].get("in")
in_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
if en_scl is None or in_scl is None:
return False # Esperar si dependencias no listas
target_scl = get_target_scl_name(
instruction, "out", network_id, default_to_temp=True
)
if target_scl is None:
print(f"Error: Sin destino claro para CONVERT {instr_uid}")
instruction["scl"] = f"// ERROR: Convert {instr_uid} sin destino"
instruction["type"] += "_error"
return True # Procesado con error
# Formatear entrada si es variable
in_scl_formatted = (
format_variable_name(in_scl)
if in_info and in_info.get("type") == "variable"
else in_scl
)
# Determinar el tipo de destino (simplificado, necesitaría info del XML original)
# Asumimos que el tipo está en TemplateValues o inferirlo del nombre/contexto
target_type = instruction.get("template_values", {}).get(
"destType", "VARIANT"
) # Ejemplo, ajustar según XML real
conversion_func = f"{target_type}_TO_" # Necesita el tipo de origen también
# Esta parte es compleja sin saber los tipos exactos. Usaremos una conversión genérica o MOVE.
# Para una conversión real, necesitaríamos algo como:
# conversion_expr = f"CONVERT(IN := {in_scl_formatted}, OUT => {target_scl})" # Sintaxis inventada
# O usar funciones específicas: INT_TO_REAL, etc.
# Simplificación: Usar asignación directa (MOVE implícito) o función genérica si existe
# Asumiremos asignación directa por ahora.
conversion_expr = in_scl_formatted
scl_core = f"{target_scl} := {conversion_expr};"
# Añadir IF EN si es necesario
scl_final = (
f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
)
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = target_scl # El valor de salida es el contenido del destino
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl # ENO sigue a EN
return True
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el procesador Convert."""
return {'type_name': 'convert', 'processor_func': process_convert, 'priority': 4}

View File

@ -0,0 +1,94 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_counter(instruction, network_id, scl_map, access_map, data):
"""
Genera SCL para Contadores (CTU, CTD, CTUD).
Requiere datos de instancia (DB o STAT).
"""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"] # CTU, CTD, CTUD
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
# 1. Obtener Inputs (varía según tipo)
params = []
resolved = True
input_pins = []
if instr_type == "CTU": input_pins = ["CU", "R", "PV"]
elif instr_type == "CTD": input_pins = ["CD", "LD", "PV"]
elif instr_type == "CTUD": input_pins = ["CU", "CD", "R", "LD", "PV"]
else:
instruction["scl"] = f"// ERROR: Tipo de contador no soportado: {instr_type}"
instruction["type"] += "_error"
return True # Procesado con error
for pin in input_pins:
pin_info = instruction["inputs"].get(pin)
if pin_info is None and pin not in ["R", "LD"]: # R y LD pueden no estar conectados
print(f"Error: Falta entrada requerida '{pin}' para {instr_type} UID {instr_uid}.")
# Permitir continuar si solo faltan R o LD opcionales? Por ahora no.
instruction["scl"] = f"// ERROR: Falta entrada requerida '{pin}' para {instr_type} UID {instr_uid}."
instruction["type"] += "_error"
return True # Error
elif pin_info: # Si el pin existe en el JSON
scl_pin = get_scl_representation(pin_info, network_id, scl_map, access_map)
if scl_pin is None:
resolved = False
break # Salir si una dependencia no está lista
scl_pin_formatted = format_variable_name(scl_pin) if pin_info.get("type") == "variable" else scl_pin
params.append(f"{pin} := {scl_pin_formatted}")
if not resolved: return False
# 2. Obtener Nombre de Instancia (NECESITA MEJORA EN x1.py)
instance_name = instruction.get("instance_db")
if not instance_name:
instance_name = f"#COUNTER_INSTANCE_{instr_uid}" # Placeholder
print(f"Advertencia: No se encontró instancia para {instr_type} UID {instr_uid}. Usando placeholder '{instance_name}'. Ajustar x1.py y declarar en x3.py.")
else:
instance_name = format_variable_name(instance_name)
# 3. Generar la llamada SCL
param_string = ", ".join(params)
scl_call = f"{instance_name}({param_string}); // TODO: Declarar {instance_name} : {instr_type}; en VAR_STAT o VAR"
instruction["scl"] = scl_call
instruction["type"] = instr_type + SCL_SUFFIX
# 4. Actualizar scl_map para las salidas (QU, QD, CV)
output_pins = []
if instr_type == "CTU": output_pins = ["QU", "CV"]
elif instr_type == "CTD": output_pins = ["QD", "CV"]
elif instr_type == "CTUD": output_pins = ["QU", "QD", "CV"]
for pin in output_pins:
map_key = (network_id, instr_uid, pin)
scl_map[map_key] = f"{instance_name}.{pin}"
# Contadores no tienen ENO estándar en LAD/FBD
return True
# --- Procesador de Comparadores (EQ ya existe, añadir otros) ---
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para los contadores CTU, CTD, CTUD."""
# Asumiendo que los tipos en el JSON son CTU, CTD, CTUD
return [
{'type_name': 'ctu', 'processor_func': process_counter, 'priority': 5},
{'type_name': 'ctd', 'processor_func': process_counter, 'priority': 5},
{'type_name': 'ctud', 'processor_func': process_counter, 'priority': 5}
]

View File

@ -0,0 +1,91 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_edge_detector(instruction, network_id, scl_map, access_map, data):
"""Genera SCL para PBox (P_TRIG) o NBox (N_TRIG).
Guarda la expresión del pulso en scl_map['out'] y la actualización
de memoria en un campo temporal '_edge_mem_update_scl'.
El campo 'scl' principal se deja casi vacío/comentario.
Usa el nombre de memoria original sin renombrar.
"""
instr_uid = instruction["instruction_uid"]
instr_type_original = instruction["type"] # PBox o NBox
if instr_type_original.endswith(SCL_SUFFIX) or "_error" in instr_type_original:
return False # Ya procesado o error
# 1. Obtener CLK y MemBit original
clk_input = instruction["inputs"].get("in")
mem_bit_input = instruction["inputs"].get("bit")
clk_scl = get_scl_representation(clk_input, network_id, scl_map, access_map)
mem_bit_scl_original = get_scl_representation(mem_bit_input, network_id, scl_map, access_map) # Ej: "M19001"
# 2. Verificar dependencias y tipo de MemBit
if clk_scl is None: return False
if mem_bit_scl_original is None:
instruction["scl"] = f"// ERROR: {instr_type_original} {instr_uid} MemBit no resuelto."
instruction["type"] = instr_type_original + "_error"
return True
if not (mem_bit_input and mem_bit_input.get("type") == "variable"):
instruction["scl"] = f"// ERROR: {instr_type_original} {instr_uid} 'bit' no es variable."
instruction["type"] = instr_type_original + "_error"
return True
# 3. Formatear CLK (usa memoria original)
clk_scl_formatted = clk_scl
if clk_scl not in ["TRUE", "FALSE"] and \
(' ' in clk_scl or 'AND' in clk_scl or 'OR' in clk_scl or ':=' in clk_scl) and \
not (clk_scl.startswith('(') and clk_scl.endswith(')')):
clk_scl_formatted = f"({clk_scl})"
# 4. Generar Lógica SCL del *pulso*
result_pulse_expression = "FALSE"
scl_comment = ""
if instr_type_original == "PBox": # P_TRIG
result_pulse_expression = f"{clk_scl_formatted} AND NOT {mem_bit_scl_original}"
scl_comment = f"// P_TRIG({clk_scl_formatted})"
elif instr_type_original == "NBox": # N_TRIG
result_pulse_expression = f"NOT {clk_scl_formatted} AND {mem_bit_scl_original}"
scl_comment = f"// N_TRIG({clk_scl_formatted})"
else: # Error
instruction["scl"] = f"// ERROR: Tipo de flanco inesperado {instr_type_original}"
instruction["type"] = instr_type_original + "_error"
return True
# 5. Generar la actualización del bit de memoria
scl_mem_update = f"{mem_bit_scl_original} := {clk_scl_formatted};"
# 6. Almacenar Resultados
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = result_pulse_expression # Guardar EXPRESIÓN del pulso
instruction['_edge_mem_update_scl'] = f"{scl_mem_update} {scl_comment}" # Guardar UPDATE + Comentario en campo temporal
instruction['scl'] = f"// {instr_type_original} Logic moved to consumer Coil" # Dejar SCL principal vacío/comentario
instruction["type"] = instr_type_original + SCL_SUFFIX
# 7. Propagar ENO
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = clk_scl
return True
# --- process_coil MODIFICADA (con \n correcto) ---
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para los detectores de flanco PBox (P_TRIG) y NBox (N_TRIG)."""
return [
{'type_name': 'pbox', 'processor_func': process_edge_detector, 'priority': 2}, # Flanco positivo
{'type_name': 'nbox', 'processor_func': process_edge_detector, 'priority': 2} # Flanco negativo
]

74
processors/process_eq.py Normal file
View File

@ -0,0 +1,74 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_eq(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
if in1_scl is None or in2_scl is None:
return False # Dependencias no listas
# Formatear operandos si son variables
op1 = (
format_variable_name(in1_scl)
if in1_info and in1_info.get("type") == "variable"
else in1_scl
)
op2 = (
format_variable_name(in2_scl)
if in2_info and in2_info.get("type") == "variable"
else in2_scl
)
# Añadir paréntesis si los operandos contienen espacios (poco probable después de formatear)
op1 = f"({op1})" if " " in op1 and not op1.startswith("(") else op1
op2 = f"({op2})" if " " in op2 and not op2.startswith("(") else op2
comparison_scl = f"{op1} = {op2}"
# Guardar el resultado booleano de la comparación en el mapa SCL para la salida 'out'
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = comparison_scl
# Procesar la entrada 'pre' (RLO anterior) para determinar ENO
pre_input = instruction["inputs"].get("pre")
pre_scl = (
"TRUE"
if pre_input is None
else get_scl_representation(pre_input, network_id, scl_map, access_map)
)
if pre_scl is None:
return False # Dependencia 'pre' no lista
# Guardar el estado de 'pre' como ENO
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = pre_scl
# El SCL generado es solo un comentario indicando la condición,
# ya que la lógica se propaga a través de scl_map['out']
instruction["scl"] = f"// Comparison Eq {instr_uid}: {comparison_scl}"
instruction["type"] = instr_type + SCL_SUFFIX
return True
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el comparador de igualdad (EQ)."""
return {'type_name': 'eq', 'processor_func': process_eq, 'priority': 2}

View File

@ -0,0 +1,82 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_math(instruction, network_id, scl_map, access_map, data):
"""
Genera SCL para operaciones matemáticas (SUB, MUL, DIV).
"""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"] # SUB, MUL, DIV
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
# Mapa de tipos a operadores SCL
op_map = {"SUB": "-", "MUL": "*", "DIV": "/"}
scl_operator = op_map.get(instr_type)
if not scl_operator:
instruction["scl"] = f"// ERROR: Operación matemática no soportada: {instr_type}"
instruction["type"] += "_error"
return True
# Obtener EN, IN1, IN2
en_input = instruction["inputs"].get("en")
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
en_scl = get_scl_representation(en_input, network_id, scl_map, access_map) if en_input else "TRUE"
in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
if en_scl is None or in1_scl is None or in2_scl is None:
return False # Dependencias no listas
# Obtener destino 'out'
target_scl = get_target_scl_name(instruction, "out", network_id, default_to_temp=True)
if target_scl is None:
instruction["scl"] = f"// ERROR: {instr_type} {instr_uid} sin destino 'out'."
instruction["type"] += "_error"
return True
# Formatear operandos si son variables
op1 = format_variable_name(in1_scl) if in1_info and in1_info.get("type") == "variable" else in1_scl
op2 = format_variable_name(in2_scl) if in2_info and in2_info.get("type") == "variable" else in2_scl
# Añadir paréntesis si es necesario (especialmente para expresiones)
op1 = f"({op1})" if (" " in op1 or "+" in op1 or "-" in op1 or "*" in op1 or "/" in op1) and not op1.startswith("(") else op1
op2 = f"({op2})" if (" " in op2 or "+" in op2 or "-" in op2 or "*" in op2 or "/" in op2) and not op2.startswith("(") else op2
# Generar SCL
scl_core = f"{target_scl} := {op1} {scl_operator} {op2};"
scl_final = f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
# Actualizar mapa SCL
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = target_scl
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
return True
# --- Procesador NOT ---
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para operaciones matemáticas (excepto ADD, MOD)."""
# Esta función maneja SUB, MUL, DIV.
return [
{'type_name': 'sub', 'processor_func': process_math, 'priority': 4}, # Resta
{'type_name': 'mul', 'processor_func': process_math, 'priority': 4}, # Multiplicación
{'type_name': 'div', 'processor_func': process_math, 'priority': 4} # División
]

76
processors/process_mod.py Normal file
View File

@ -0,0 +1,76 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_mod(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
en_input = instruction["inputs"].get("en")
en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
in1_info = instruction["inputs"].get("in1")
in2_info = instruction["inputs"].get("in2")
in1_scl = get_scl_representation(in1_info, network_id, scl_map, access_map)
in2_scl = get_scl_representation(in2_info, network_id, scl_map, access_map)
if en_scl is None or in1_scl is None or in2_scl is None:
return False
target_scl = get_target_scl_name(
instruction, "out", network_id, default_to_temp=True
)
if target_scl is None:
print(f"Error: Sin destino MOD {instr_uid}")
instruction["scl"] = f"// ERROR: Mod {instr_uid} sin destino"
instruction["type"] += "_error"
return True
# Formatear operandos si son variables
op1 = (
format_variable_name(in1_scl)
if in1_info and in1_info.get("type") == "variable"
else in1_scl
)
op2 = (
format_variable_name(in2_scl)
if in2_info and in2_info.get("type") == "variable"
else in2_scl
)
# Añadir paréntesis si es necesario (poco probable tras formatear)
op1 = f"({op1})" if " " in op1 and not op1.startswith("(") else op1
op2 = f"({op2})" if " " in op2 and not op2.startswith("(") else op2
scl_core = f"{target_scl} := {op1} MOD {op2};"
scl_final = (
f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
)
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = target_scl
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
return True
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la operación Modulo."""
return {'type_name': 'mod', 'processor_func': process_mod, 'priority': 4}

View File

@ -0,0 +1,84 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_move(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
en_input = instruction["inputs"].get("en")
en_scl = (
get_scl_representation(en_input, network_id, scl_map, access_map)
if en_input
else "TRUE"
)
in_info = instruction["inputs"].get("in")
in_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
if en_scl is None or in_scl is None:
return False
# Intentar obtener el destino de 'out1' (o 'out' si es el estándar)
target_scl = get_target_scl_name(
instruction, "out1", network_id, default_to_temp=False
)
if target_scl is None:
target_scl = get_target_scl_name(
instruction, "out", network_id, default_to_temp=False
)
if target_scl is None:
# Si no hay destino explícito, podríamos usar una temp si la lógica lo requiere,
# pero MOVE generalmente necesita un destino claro. Marcar como advertencia/error.
print(
f"Advertencia/Error: MOVE {instr_uid} sin destino claro en 'out' o 'out1'. Se requiere destino explícito."
)
# Decidir si generar error o simplemente no hacer nada. No hacer nada es más seguro.
# instruction["scl"] = f"// ERROR: MOVE {instr_uid} sin destino"
# instruction["type"] += "_error"
# return True
return False # No procesar si no hay destino claro
# Formatear entrada si es variable
in_scl_formatted = (
format_variable_name(in_scl)
if in_info and in_info.get("type") == "variable"
else in_scl
)
scl_core = f"{target_scl} := {in_scl_formatted};"
scl_final = (
f"IF {en_scl} THEN\n {scl_core}\nEND_IF;" if en_scl != "TRUE" else scl_core
)
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
# Propagar el valor movido a través de scl_map si se usa 'out' o 'out1' como fuente
map_key_out = (network_id, instr_uid, "out") # Asumir 'out' como estándar
scl_map[map_key_out] = target_scl # El valor es lo que está en el destino
map_key_out1 = (network_id, instr_uid, "out1") # Si existe out1
scl_map[map_key_out1] = target_scl
map_key_eno = (network_id, instr_uid, "eno")
scl_map[map_key_eno] = en_scl
return True
# EN x2_process.py
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la operación Move."""
return {'type_name': 'move', 'processor_func': process_move, 'priority': 3}

47
processors/process_not.py Normal file
View File

@ -0,0 +1,47 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_not(instruction, network_id, scl_map, access_map, data):
"""Genera la expresión SCL para la inversión lógica NOT."""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"] # Not
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
in_info = instruction["inputs"].get("in")
in_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
if in_scl is None:
return False # Dependencia no lista
# Formatear entrada (añadir paréntesis si es complejo)
in_scl_formatted = in_scl
if (" " in in_scl or "AND" in in_scl or "OR" in in_scl) and not (in_scl.startswith("(") and in_scl.endswith(")")):
in_scl_formatted = f"({in_scl})"
result_scl = f"NOT {in_scl_formatted}"
# Guardar resultado en mapa para 'out'
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = result_scl
instruction["scl"] = f"// Logic NOT {instr_uid}: {result_scl}"
instruction["type"] = instr_type + SCL_SUFFIX
# NOT no tiene EN/ENO explícito en LAD, modifica el RLO
return True
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la operación Not."""
return {'type_name': 'not', 'processor_func': process_not, 'priority': 1}

80
processors/process_o.py Normal file
View File

@ -0,0 +1,80 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_o(instruction, network_id, scl_map, access_map, data):
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
# Buscar todas las entradas 'in', 'in1', 'in2', ...
input_pins = sorted([pin for pin in instruction["inputs"] if pin.startswith("in")])
if not input_pins:
print(f"Error: O {instr_uid} sin pines de entrada (inX).")
instruction["scl"] = f"// ERROR: O {instr_uid} sin pines inX"
instruction["type"] += "_error"
return True # Procesado con error
scl_parts = []
all_resolved = True
for pin in input_pins:
in_scl = get_scl_representation(
instruction["inputs"][pin], network_id, scl_map, access_map
)
if in_scl is None:
all_resolved = False
# print(f"DEBUG: O {instr_uid} esperando pin {pin}")
break # Salir del bucle for si una entrada no está lista
# Formatear término (añadir paréntesis si es necesario)
term = in_scl
if (" " in term or "AND" in term) and not (
term.startswith("(") and term.endswith(")")
):
term = f"({term})"
scl_parts.append(term)
if not all_resolved:
return False # Esperar a que todas las entradas estén resueltas
# Construir la expresión OR
result_scl = "FALSE" # Valor por defecto si no hay entradas válidas (raro)
if scl_parts:
result_scl = " OR ".join(scl_parts)
# Simplificar si solo hay un término
if len(scl_parts) == 1:
result_scl = scl_parts[0]
# Quitar paréntesis redundantes si solo hay un término y está entre paréntesis
if result_scl.startswith("(") and result_scl.endswith(")"):
# Comprobar si los paréntesis son necesarios (contienen operadores de menor precedencia)
# Simplificación: quitar siempre si solo hay un término. Podría ser incorrecto en casos complejos.
# result_scl = result_scl[1:-1] # Comentado por seguridad
pass
# Actualizar mapa SCL y la instrucción
map_key_out = (network_id, instr_uid, "out")
scl_map[map_key_out] = result_scl
instruction["scl"] = (
f"// Logic O {instr_uid}: {result_scl}" # Comentario informativo
)
instruction["type"] = instr_type + SCL_SUFFIX
# La instrucción 'O' no tiene ENO propio, propaga el resultado por 'out'
return True
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la operación lógica O (OR)."""
return {'type_name': 'o', 'processor_func': process_o, 'priority': 1}

View File

@ -0,0 +1,59 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_rcoil(instruction, network_id, scl_map, access_map, data ):
"""Genera SCL para Reset Coil (RCoil): IF condition THEN variable := FALSE; END_IF;"""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False # Ya procesado o con error
# Obtener condición de entrada (RLO)
in_info = instruction["inputs"].get("in")
condition_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
# Obtener operando (variable a poner a FALSE)
operand_info = instruction["inputs"].get("operand")
variable_scl = get_scl_representation(operand_info, network_id, scl_map, access_map)
# Verificar dependencias
if condition_scl is None or variable_scl is None:
return False # Dependencias no listas
# Verificar que el operando sea una variable
if not (operand_info and operand_info.get("type") == "variable"):
print(f"Error: RCoil {instr_uid} operando no es variable o falta info (Tipo: {operand_info.get('type')}).")
instruction["scl"] = f"// ERROR: RCoil {instr_uid} operando no es variable."
instruction["type"] += "_error"
return True # Procesado con error
# Formatear nombre de variable
variable_name_formatted = format_variable_name(variable_scl)
# Generar SCL
scl_core = f"{variable_name_formatted} := FALSE;"
scl_final = (
f"IF {condition_scl} THEN\n {scl_core}\nEND_IF;" if condition_scl != "TRUE" else scl_core
)
# Actualizar instrucción
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
# RCoil no genera salida 'out' ni 'eno' significativas para propagar
return True
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la bobina Reset (RCoil)."""
return {'type_name': 'rcoil', 'processor_func': process_rcoil, 'priority': 3}

View File

@ -0,0 +1,59 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_scoil(instruction, network_id, scl_map, access_map, data):
"""Genera SCL para Set Coil (SCoil): IF condition THEN variable := TRUE; END_IF;"""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"]
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False # Ya procesado o con error
# Obtener condición de entrada (RLO)
in_info = instruction["inputs"].get("in")
condition_scl = get_scl_representation(in_info, network_id, scl_map, access_map)
# Obtener operando (variable a poner a TRUE)
operand_info = instruction["inputs"].get("operand")
variable_scl = get_scl_representation(operand_info, network_id, scl_map, access_map)
# Verificar dependencias
if condition_scl is None or variable_scl is None:
return False # Dependencias no listas
# Verificar que el operando sea una variable
if not (operand_info and operand_info.get("type") == "variable"):
print(f"Error: SCoil {instr_uid} operando no es variable o falta info (Tipo: {operand_info.get('type')}).")
instruction["scl"] = f"// ERROR: SCoil {instr_uid} operando no es variable."
instruction["type"] += "_error"
return True # Procesado con error
# Formatear nombre de variable
variable_name_formatted = format_variable_name(variable_scl)
# Generar SCL
scl_core = f"{variable_name_formatted} := TRUE;"
scl_final = (
f"IF {condition_scl} THEN\n {scl_core}\nEND_IF;" if condition_scl != "TRUE" else scl_core
)
# Actualizar instrucción
instruction["scl"] = scl_final
instruction["type"] = instr_type + SCL_SUFFIX
# SCoil no genera salida 'out' ni 'eno' significativas para propagar
return True
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para la bobina Set (SCoil)."""
return {'type_name': 'scoil', 'processor_func': process_scoil, 'priority': 3}

73
processors/process_sd.py Normal file
View File

@ -0,0 +1,73 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_sd(instruction, network_id, scl_map, access_map, data):
"""
Genera SCL para Temporizador On-Delay (Sd -> TON).
Requiere datos de instancia (DB o STAT/TEMP).
"""
instr_uid = instruction["instruction_uid"]
instr_type = "Sd" # Tipo original LAD
if instruction["type"].endswith(SCL_SUFFIX) or "_error" in instruction["type"]:
return False
# 1. Obtener Inputs: s (start), tv (time value)
# El pin 'r' (reset) no tiene equivalente directo en TON, se ignora aquí.
s_info = instruction["inputs"].get("s")
tv_info = instruction["inputs"].get("tv")
timer_instance_info = instruction["inputs"].get("timer") # Esperando que x1 lo extraiga
scl_s = get_scl_representation(s_info, network_id, scl_map, access_map)
scl_tv = get_scl_representation(tv_info, network_id, scl_map, access_map)
scl_instance_name = get_scl_representation(timer_instance_info, network_id, scl_map, access_map)
if scl_s is None or scl_tv is None:
return False # Dependencias no listas
# 2. Validar y obtener Nombre de Instancia
instance_name = None
if timer_instance_info and timer_instance_info.get("type") == "variable":
instance_name = scl_instance_name
elif timer_instance_info:
print(f"Advertencia: Pin 'timer' de {instr_type} UID {instr_uid} conectado a algo inesperado: {timer_instance_info.get('type')}")
instance_name = f"#TON_INSTANCE_{instr_uid}"
else:
instance_name = f"#TON_INSTANCE_{instr_uid}"
print(f"Advertencia: No se encontró conexión al pin 'timer' para {instr_type} UID {instr_uid}. Usando placeholder '{instance_name}'. ¡Revisar x1.py y XML!")
# 3. Formatear entradas si son variables
scl_s_formatted = format_variable_name(scl_s) if s_info and s_info.get("type") == "variable" else scl_s
scl_tv_formatted = format_variable_name(scl_tv) if tv_info and tv_info.get("type") == "variable" else scl_tv
# 4. Generar la llamada SCL (TON usa IN, PT, Q, ET)
scl_call = f"{instance_name}(IN := {scl_s_formatted}, PT := {scl_tv_formatted}); // TODO: Declarar {instance_name} : TON; en VAR_STAT o VAR"
instruction["scl"] = scl_call
instruction["type"] = instr_type + SCL_SUFFIX
# 5. Actualizar scl_map para las salidas Q y RT (mapeado a ET de TON)
map_key_q = (network_id, instr_uid, "q")
scl_map[map_key_q] = f"{instance_name}.Q"
map_key_rt = (network_id, instr_uid, "rt")
scl_map[map_key_rt] = f"{instance_name}.ET"
return True
# --- NUEVO: Procesador de Agrupación (Refinado) ---
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el temporizador On-Delay (Sd -> TON)."""
# Asumiendo que el tipo en el JSON es 'Sd'
return {'type_name': 'sd', 'processor_func': process_sd, 'priority': 5}

91
processors/process_se.py Normal file
View File

@ -0,0 +1,91 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_se(instruction, network_id, scl_map, access_map, data):
"""
Genera SCL para Temporizador de Pulso (Se -> TP).
Requiere datos de instancia (DB o STAT/TEMP).
"""
instr_uid = instruction["instruction_uid"]
instr_type = "Se" # Tipo original LAD
if instruction["type"].endswith(SCL_SUFFIX) or "_error" in instruction["type"]:
return False
# 1. Obtener Inputs: s (start), tv (time value)
# El pin 'r' (reset) no tiene equivalente directo en TP, se ignora aquí.
s_info = instruction["inputs"].get("s")
tv_info = instruction["inputs"].get("tv")
timer_instance_info = instruction["inputs"].get("timer") # Esperando que x1 lo extraiga
scl_s = get_scl_representation(s_info, network_id, scl_map, access_map)
scl_tv = get_scl_representation(tv_info, network_id, scl_map, access_map)
# Obtenemos el nombre de la variable instancia, crucial!
scl_instance_name = get_scl_representation(timer_instance_info, network_id, scl_map, access_map)
if scl_s is None or scl_tv is None:
return False # Dependencias no listas
# 2. Validar y obtener Nombre de Instancia
instance_name = None
if timer_instance_info and timer_instance_info.get("type") == "variable":
instance_name = scl_instance_name # Ya debería estar formateado por get_scl_repr
elif timer_instance_info: # Si está conectado pero no es variable directa? Raro.
print(f"Advertencia: Pin 'timer' de {instr_type} UID {instr_uid} conectado a algo inesperado: {timer_instance_info.get('type')}")
instance_name = f"#TP_INSTANCE_{instr_uid}" # Usar placeholder
else: # Si no hay pin 'timer' conectado (no debería pasar si x1 funciona)
instance_name = f"#TP_INSTANCE_{instr_uid}" # Usar placeholder
print(f"Advertencia: No se encontró conexión al pin 'timer' para {instr_type} UID {instr_uid}. Usando placeholder '{instance_name}'. ¡Revisar x1.py y XML!")
# 3. Formatear entradas si son variables (aunque get_scl_representation ya debería hacerlo)
scl_s_formatted = format_variable_name(scl_s) if s_info and s_info.get("type") == "variable" else scl_s
scl_tv_formatted = format_variable_name(scl_tv) if tv_info and tv_info.get("type") == "variable" else scl_tv
# 4. Generar la llamada SCL (TP usa IN, PT, Q, ET)
scl_call = f"{instance_name}(IN := {scl_s_formatted}, PT := {scl_tv_formatted}); // TODO: Declarar {instance_name} : TP; en VAR_STAT o VAR"
instruction["scl"] = scl_call
instruction["type"] = instr_type + SCL_SUFFIX
# 5. Actualizar scl_map usando los nombres de pin ORIGINALES mapeados si existen
output_pin_mapping_reverse = {v: k for k, v in instruction.get("_output_pin_mapping", {}).items()} # Necesitaríamos guardar el mapeo en x1
q_original_pin = "q" # Default
rt_original_pin = "rt" # Default
# Intentar encontrar los pines originales si x1 guardó el mapeo (MEJORA NECESARIA en x1)
# Por ahora, para SdCoil que mapeaba out->q, usaremos 'out' directamente
if instruction.get("type") == "Se_scl" and instruction.get("original_type") == "SdCoil": # Necesitamos guardar original_type en x1
q_original_pin = "out"
# rt no existe en SdCoil
map_key_q = (network_id, instr_uid, q_original_pin)
scl_map[map_key_q] = f"{instance_name}.Q"
if rt_original_pin: # Solo añadir rt si corresponde
map_key_rt = (network_id, instr_uid, rt_original_pin)
scl_map[map_key_rt] = f"{instance_name}.ET"
return True
# --- Procesador para Sd (On-Delay Timer -> TON SCL) ---
# --- Function code ends ---
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para el temporizador de Pulso (Se -> TP) y maneja SdCoil."""
# Asumiendo que el tipo en el JSON es 'Se'
# Y que SdCoil también se mapea aquí según el análisis previo
return [
{'type_name': 'se', 'processor_func': process_se, 'priority': 5},
{'type_name': 'sdcoil', 'processor_func': process_se, 'priority': 5} # SdCoil también se procesa como TP
]

View File

@ -0,0 +1,70 @@
# -*- coding: utf-8 -*-
from .processor_utils import get_scl_representation, format_variable_name,get_target_scl_name
# TODO: Import necessary functions from processor_utils
# Example: from .processor_utils import get_scl_representation, format_variable_name
# Or: import processors.processor_utils as utils
# TODO: Define constants if needed (e.g., SCL_SUFFIX) or import them
SCL_SUFFIX = "_scl"
# --- Function code starts ---
def process_timer(instruction, network_id, scl_map, access_map, data):
"""
Genera SCL para Temporizadores (TON, TOF).
Requiere datos de instancia (DB o STAT).
"""
instr_uid = instruction["instruction_uid"]
instr_type = instruction["type"] # Será "TON" o "TOF"
if instr_type.endswith(SCL_SUFFIX) or "_error" in instr_type:
return False
# 1. Obtener Inputs
in_info = instruction["inputs"].get("IN") # Entrada booleana
pt_info = instruction["inputs"].get("PT") # Preset Time (Tipo TIME)
scl_in = get_scl_representation(in_info, network_id, scl_map, access_map)
scl_pt = get_scl_representation(pt_info, network_id, scl_map, access_map)
if scl_in is None or scl_pt is None:
return False # Dependencias no listas
# 2. Obtener Nombre de Instancia (NECESITA MEJORA EN x1.py)
instance_name = instruction.get("instance_db") # Reutilizar campo si x1 lo llena
if not instance_name:
# Generar placeholder si x1 no extrajo la instancia para Part
instance_name = f"#TIMER_INSTANCE_{instr_uid}" # Placeholder para VAR_TEMP o VAR_STAT
print(f"Advertencia: No se encontró instancia para {instr_type} UID {instr_uid}. Usando placeholder '{instance_name}'. Ajustar x1.py y declarar en x3.py.")
else:
instance_name = format_variable_name(instance_name) # Limpiar si viene de x1
# 3. Formatear entradas si son variables
scl_in_formatted = format_variable_name(scl_in) if in_info and in_info.get("type") == "variable" else scl_in
scl_pt_formatted = format_variable_name(scl_pt) if pt_info and pt_info.get("type") == "variable" else scl_pt
# 4. Generar la llamada SCL
# Nota: Las salidas Q y ET se acceden directamente desde la instancia.
scl_call = f"{instance_name}(IN := {scl_in_formatted}, PT := {scl_pt_formatted}); // TODO: Declarar {instance_name} : {instr_type}; en VAR_STAT o VAR"
instruction["scl"] = scl_call
instruction["type"] = instr_type + SCL_SUFFIX
# 5. Actualizar scl_map para las salidas Q y ET
map_key_q = (network_id, instr_uid, "Q")
scl_map[map_key_q] = f"{instance_name}.Q"
map_key_et = (network_id, instr_uid, "ET")
scl_map[map_key_et] = f"{instance_name}.ET"
# TON/TOF no tienen un pin ENO estándar en LAD/FBD que se mapee directamente
return True
# --- Processor Information Function ---
def get_processor_info():
"""Devuelve la información para los temporizadores TON y TOF (si se usan genéricamente)."""
# Esta función manejaría tipos TON/TOF si aparecieran directamente en el JSON
# y no fueran manejados por process_sd/process_se (que es lo más común desde LAD).
# Incluir por si acaso o si la conversión inicial genera TON/TOF directamente.
return [
{'type_name': 'ton', 'processor_func': process_timer, 'priority': 5},
{'type_name': 'tof', 'processor_func': process_timer, 'priority': 5}
]

View File

@ -0,0 +1,209 @@
# -*- coding: utf-8 -*-
# /processors/processor_utils.py
# Procesador de utilidades para el procesamiento de archivos XML de Simatic
import re
# --- Copia aquí las funciones auxiliares ---
# get_scl_representation, format_variable_name,
# generate_temp_var_name, get_target_scl_name
# Asegúrate de que no dependen de variables globales de x2_process.py
# (como 'data' o 'network_access_maps' - esas se pasarán como argumentos)
# Ejemplo de una función (asegúrate de copiar todas las necesarias)
def format_variable_name(name):
"""Limpia el nombre de la variable para SCL."""
if not name:
return "_INVALID_NAME_"
if name.startswith('"') and name.endswith('"'):
return name
prefix = ""
if name.startswith("#"):
prefix = "#"
name = name[1:]
if name and name[0].isdigit():
name = "_" + name
name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
return prefix + name
# --- Helper Functions ---
# (get_scl_representation, format_variable_name, generate_temp_var_name, get_target_scl_name - sin cambios)
def get_scl_representation(source_info, network_id, scl_map, access_map):
if not source_info:
return None
if isinstance(source_info, list):
scl_parts = []
all_resolved = True
for sub_source in source_info:
sub_scl = get_scl_representation(
sub_source, network_id, scl_map, access_map
)
if sub_scl is None:
all_resolved = False
break
if (
sub_scl in ["TRUE", "FALSE"]
or (sub_scl.startswith('"') and sub_scl.endswith('"'))
or sub_scl.isdigit()
or (sub_scl.startswith("(") and sub_scl.endswith(")"))
):
scl_parts.append(sub_scl)
else:
scl_parts.append(f"({sub_scl})")
return (
" OR ".join(scl_parts)
if len(scl_parts) > 1
else (scl_parts[0] if scl_parts else "FALSE") if all_resolved else None
)
source_type = source_info.get("type")
if source_type == "powerrail":
return "TRUE"
elif source_type == "variable":
name = source_info.get("name")
# Asegurar que los nombres de variables se formatean correctamente aquí también
return (
format_variable_name(name)
if name
else f"_ERR_VAR_NO_NAME_{source_info.get('uid')}_"
)
elif source_type == "constant":
dtype = str(source_info.get("datatype", "")).upper()
value = source_info.get("value")
try:
if dtype == "BOOL":
return str(value).upper()
elif dtype in [
"INT",
"DINT",
"SINT",
"USINT",
"UINT",
"UDINT",
"LINT",
"ULINT",
"WORD",
"DWORD",
"LWORD",
"BYTE",
]:
return str(value)
elif dtype in ["REAL", "LREAL"]:
s_val = str(value)
return s_val if "." in s_val or "e" in s_val.lower() else s_val + ".0"
elif dtype == "STRING":
# Escapar comillas simples dentro del string si es necesario
str_val = str(value).replace("'", "''")
return f"'{str_val}'"
elif dtype == "TYPEDCONSTANT":
# Podría necesitar formateo específico basado en el tipo real
return str(value)
else:
# Otros tipos (TIME, DATE, etc.) - devolver como string por ahora
str_val = str(value).replace("'", "''")
return f"'{str_val}'"
except Exception as e:
print(f"Advertencia: Error formateando constante {source_info}: {e}")
return f"_ERR_CONST_FORMAT_{source_info.get('uid')}_"
elif source_type == "connection":
map_key = (
network_id,
source_info.get("source_instruction_uid"),
source_info.get("source_pin"),
)
return scl_map.get(map_key)
elif source_type == "unknown_source":
print(
f"Advertencia: Refiriendo a fuente desconocida UID: {source_info.get('uid')}"
)
return f"_ERR_UNKNOWN_SRC_{source_info.get('uid')}_"
else:
print(f"Advertencia: Tipo de fuente desconocido: {source_info}")
return f"_ERR_INVALID_SRC_TYPE_"
def format_variable_name(name):
"""Limpia el nombre de la variable para SCL."""
if not name:
return "_INVALID_NAME_"
# Si ya está entre comillas dobles, asumimos que es un nombre complejo (ej. "DB"."Variable")
# y lo devolvemos tal cual para SCL.
if name.startswith('"') and name.endswith('"'):
# Podríamos añadir validación extra aquí si fuera necesario
return name
# Si no tiene comillas, es un nombre simple (ej. Tag_1, #tempVar)
# Reemplazar caracteres no válidos (excepto '_') por '_'
# Permitir '#' al inicio para variables temporales
prefix = ""
if name.startswith("#"):
prefix = "#"
name = name[1:]
# Permitir letras, números y guiones bajos. Reemplazar el resto.
# Asegurarse de que no empiece con número (después del # si existe)
if name and name[0].isdigit():
name = "_" + name
# Reemplazar caracteres no válidos
name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
return prefix + name
def generate_temp_var_name(network_id, instr_uid, pin_name):
net_id_clean = str(network_id).replace("-", "_")
instr_uid_clean = str(instr_uid).replace("-", "_")
pin_name_clean = str(pin_name).replace("-", "_").lower()
# Usar # para variables temporales SCL estándar
return f"#_temp_{net_id_clean}_{instr_uid_clean}_{pin_name_clean}"
def get_target_scl_name(instruction, output_pin_name, network_id, default_to_temp=True):
instr_uid = instruction["instruction_uid"]
output_pin_data = instruction["outputs"].get(output_pin_name)
target_scl = None
if (
output_pin_data
and isinstance(output_pin_data, list)
and len(output_pin_data) == 1
):
dest_access = output_pin_data[0]
if dest_access.get("type") == "variable":
target_scl = dest_access.get("name")
if target_scl:
target_scl = format_variable_name(target_scl) # Formatear nombre
else:
print(
f"Error: Var destino {instr_uid}.{output_pin_name} sin nombre (UID: {dest_access.get('uid')}). {'Usando temp.' if default_to_temp else 'Ignorando.'}"
)
target_scl = (
generate_temp_var_name(network_id, instr_uid, output_pin_name)
if default_to_temp
else None
)
elif dest_access.get("type") == "constant":
print(
f"Advertencia: Instr {instr_uid} escribe en const UID {dest_access.get('uid')}. {'Usando temp.' if default_to_temp else 'Ignorando.'}"
)
target_scl = (
generate_temp_var_name(network_id, instr_uid, output_pin_name)
if default_to_temp
else None
)
else:
print(
f"Advertencia: Destino {instr_uid}.{output_pin_name} no es var/const: {dest_access.get('type')}. {'Usando temp.' if default_to_temp else 'Ignorando.'}"
)
target_scl = (
generate_temp_var_name(network_id, instr_uid, output_pin_name)
if default_to_temp
else None
)
elif default_to_temp:
target_scl = generate_temp_var_name(network_id, instr_uid, output_pin_name)
# Si target_scl sigue siendo None y no se debe usar temp, devolver None
if target_scl is None and not default_to_temp:
return None
# Si target_scl es None pero sí se permite temp, generar uno ahora
if target_scl is None and default_to_temp:
target_scl = generate_temp_var_name(network_id, instr_uid, output_pin_name)
return target_scl

145
x0_main.py Normal file
View File

@ -0,0 +1,145 @@
import argparse
import subprocess
import os
import sys
import locale
import glob # <--- Importar glob para buscar archivos
# (Función get_console_encoding y variable CONSOLE_ENCODING como en la respuesta anterior)
def get_console_encoding():
"""Obtiene la codificación preferida de la consola, con fallback."""
try:
return locale.getpreferredencoding(False)
except Exception:
return 'cp1252'
CONSOLE_ENCODING = get_console_encoding()
# Descomenta la siguiente línea si quieres ver la codificación detectada:
# print(f"Detected console encoding: {CONSOLE_ENCODING}")
# (Función run_script como en la respuesta anterior, usando CONSOLE_ENCODING)
def run_script(script_name, xml_arg):
"""Runs a given script with the specified XML file argument."""
script_path = os.path.join(os.path.dirname(__file__), script_name)
command = [sys.executable, script_path, xml_arg]
print(f"\n--- Running {script_name} with argument: {xml_arg} ---")
try:
result = subprocess.run(command,
check=True,
capture_output=True,
text=True,
encoding=CONSOLE_ENCODING,
errors='replace') # 'replace' para evitar errores
# Imprimir stdout y stderr
# Eliminar saltos de línea extra al final si existen
stdout_clean = result.stdout.strip()
stderr_clean = result.stderr.strip()
if stdout_clean:
print(stdout_clean)
if stderr_clean:
print("--- Stderr ---")
print(stderr_clean)
print("--------------")
print(f"--- {script_name} finished successfully ---")
return True
except FileNotFoundError:
print(f"Error: Script '{script_path}' not found.")
return False
except subprocess.CalledProcessError as e:
print(f"Error running {script_name}:")
print(f"Return code: {e.returncode}")
stdout_decoded = e.stdout.decode(CONSOLE_ENCODING, errors='replace').strip() if isinstance(e.stdout, bytes) else (e.stdout or "").strip()
stderr_decoded = e.stderr.decode(CONSOLE_ENCODING, errors='replace').strip() if isinstance(e.stderr, bytes) else (e.stderr or "").strip()
if stdout_decoded:
print("--- Stdout ---")
print(stdout_decoded)
if stderr_decoded:
print("--- Stderr ---")
print(stderr_decoded)
print("--------------")
return False
except Exception as e:
print(f"An unexpected error occurred while running {script_name}: {e}")
return False
# --- NUEVA FUNCIÓN PARA SELECCIONAR ARCHIVO ---
def select_xml_file():
"""Busca archivos .xml, los lista y pide al usuario que elija uno."""
print("No XML file specified. Searching for XML files in current directory...")
# Buscar archivos .xml en el directorio actual (.)
xml_files = sorted(glob.glob('*.xml')) # sorted para orden alfabético
if not xml_files:
print("Error: No .xml files found in the current directory.")
sys.exit(1)
print("\nAvailable XML files:")
for i, filename in enumerate(xml_files, start=1):
print(f" {i}: {filename}")
while True:
try:
choice = input(f"Enter the number of the file to process (1-{len(xml_files)}): ")
choice_num = int(choice)
if 1 <= choice_num <= len(xml_files):
selected_file = xml_files[choice_num - 1]
print(f"Selected: {selected_file}")
return selected_file
else:
print("Invalid choice. Please enter a number from the list.")
except ValueError:
print("Invalid input. Please enter a number.")
except EOFError: # Manejar si la entrada se cierra inesperadamente
print("\nSelection cancelled.")
sys.exit(1)
# --- FIN NUEVA FUNCIÓN ---
if __name__ == "__main__":
xml_filename = None
# Comprobar si se pasó un argumento de línea de comandos
# sys.argv[0] es el nombre del script, sys.argv[1] sería el primer argumento
if len(sys.argv) > 1:
# Si hay argumentos, usar argparse para parsearlo (permite -h, etc.)
parser = argparse.ArgumentParser(
description="Run the Simatic XML processing pipeline."
)
parser.add_argument(
"xml_file",
# Ya no necesitamos nargs='?' ni default aquí porque sabemos que hay un argumento
help="Path to the XML file to process.",
)
# Parsear solo los argumentos conocidos, ignorar extras si los hubiera
args, unknown = parser.parse_known_args()
xml_filename = args.xml_file
print(f"XML file specified via argument: {xml_filename}")
else:
# Si no hay argumentos, llamar a la función interactiva
xml_filename = select_xml_file()
# --- El resto del script continúa igual, usando xml_filename ---
# Verificar si el archivo XML de entrada (seleccionado o pasado) existe
if not os.path.exists(xml_filename):
print(f"Error: Selected or specified XML file not found: {xml_filename}")
sys.exit(1)
print(f"\nStarting pipeline for: {xml_filename}")
# Run scripts sequentially (asegúrate que los nombres son correctos)
script1 = "x1_to_json.py"
script2 = "x2_process.py"
script3 = "x3_generate_scl.py"
if run_script(script1, xml_filename):
if run_script(script2, xml_filename):
if run_script(script3, xml_filename):
print("\nPipeline completed successfully.")
else:
print("\nPipeline failed at script:", script3)
else:
print("\nPipeline failed at script:", script2)
else:
print("\nPipeline failed at script:", script1)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -2,6 +2,7 @@
import json
import os
import re
import argparse
# --- Helper Functions ---
@ -155,32 +156,73 @@ def generate_scl(processed_json_filepath, output_scl_filepath):
for i, network in enumerate(data.get('networks', [])):
network_title = network.get('title', f'Network {network.get("id")}')
network_comment = network.get('comment', '')
scl_output.append(f" // Network {i+1}: {network_title}")
# Obtener lenguaje original de la red, default a LAD si no está
network_lang = network.get('language', 'LAD')
scl_output.append(f" // Network {i+1}: {network_title} (Original Language: {network_lang})")
if network_comment:
# Añadir comentario de red indentado
for line in network_comment.splitlines():
scl_output.append(f" // {line}")
scl_output.append("") # Línea en blanco antes del código de la red
network_has_code = False
# Iterar sobre la 'logica' de la red
for instruction in network.get('logic', []):
instruction_type = instruction.get("type", "")
scl_code = instruction.get('scl')
if scl_code:
network_has_code = True
# Indentar y añadir el código SCL de la instrucción
# Quitar comentarios "// RLO updated..." o "// Comparison..."
# ya que el código SCL resultante es la representación final.
# Mantener comentarios de PBox por claridad.
is_rlo_update_comment = scl_code.strip().startswith("// RLO updated")
is_comparison_comment = scl_code.strip().startswith("// Comparison")
is_logic_o_comment = scl_code.strip().startswith("// Logic O")
if not (is_rlo_update_comment or is_comparison_comment or is_logic_o_comment) or "PBox" in scl_code :
for line in scl_code.splitlines():
scl_output.append(f" {line}") # Indentación de 2 espacios
# --- INICIO: Manejar RAW_SCL_CHUNK y otros tipos ---
if instruction_type == "RAW_SCL_CHUNK" and scl_code:
network_has_code = True
# Imprimir el SCL reconstruido directamente
for line in scl_code.splitlines():
scl_output.append(f" {line}") # Añadir indentación
elif instruction_type == "UNSUPPORTED_LANG" and scl_code:
network_has_code = True
# Imprimir comentario para lenguajes no soportados
for line in scl_code.splitlines():
scl_output.append(f" {line}")
elif instruction_type.endswith("_scl") and scl_code:
# Código SCL generado por x2_process.py para LAD/FBD
if instruction.get("grouped", False): # Ignorar si fue agrupado
continue
# Lógica mejorada para omitir comentarios internos si no aportan
lines = scl_code.splitlines()
is_internal_comment_only = (len(lines) == 1 and
(lines[0].strip().startswith("// RLO") or
lines[0].strip().startswith("// Comparison") or
lines[0].strip().startswith("// Logic O") or
lines[0].strip().startswith("// Logic included in grouped IF") or # Usar GROUPED_COMMENT si lo importas
lines[0].strip().startswith("// P_TRIG") or
lines[0].strip().startswith("// N_TRIG") ))
if not is_internal_comment_only:
network_has_code = True
for line in lines:
clean_line = line.strip()
# Omitir comentarios autogenerados específicos
if not (clean_line.startswith("// RLO:") or \
clean_line.startswith("// Comparison") or \
clean_line.startswith("// Logic O") or \
clean_line == "// Logic included in grouped IF" or \
clean_line.startswith("// P_TRIG(") or \
clean_line.startswith("// N_TRIG(")):
scl_output.append(f" {line}") # Indentación
# Ignorar instrucciones no procesadas (sin _scl) o con error
# elif "_error" in instruction_type:
# scl_output.append(f" // Error processing instruction {instruction.get('instruction_uid')}: {scl_code}")
# network_has_code = True
# --- FIN: Manejar RAW_SCL_CHUNK y otros tipos ---
if network_has_code:
scl_output.append("") # Añadir línea en blanco después del código de la red
scl_output.append("") # Añadir línea en blanco después del código de la red si hubo algo
else:
# Añadir comentario si la red estaba vacía o no generó código imprimible
scl_output.append(f" // Network did not produce printable SCL code.")
scl_output.append("")
scl_output.append("END_FUNCTION_BLOCK")
@ -196,13 +238,35 @@ def generate_scl(processed_json_filepath, output_scl_filepath):
# --- Ejecución ---
if __name__ == "__main__":
# Imports necesarios solo para la ejecución como script principal
import argparse
import os
import sys
xml_file = "TestLAD.xml" # CAMBIAR AL NUEVO ARCHIVO XML
input_json_file = xml_file.replace(
".xml", "_simplified_processed.json"
) # Nombre de salida dinámico
output_scl_file = input_json_file.replace(
".json", ".scl"
) # Nombre de salida dinámico
parser = argparse.ArgumentParser(description="Generate final SCL file from processed JSON.")
# Acepta el nombre del XML original como referencia para derivar nombres
parser.add_argument(
"source_xml_filepath",
nargs="?",
default="TestLAD.xml",
help="Path to the original source XML file (used to derive input/output names, default: TestLAD.xml)"
)
args = parser.parse_args()
generate_scl(input_json_file, output_scl_file)
# Derivar nombres de archivos de entrada y salida
xml_filename_base = os.path.splitext(os.path.basename(args.source_xml_filepath))[0]
input_dir = os.path.dirname(args.source_xml_filepath) # Directorio del XML original
# Nombre del JSON procesado (entrada para este script)
input_json_file = os.path.join(input_dir, f"{xml_filename_base}_simplified_processed.json")
# Nombre del SCL final (salida de este script)
output_scl_file = os.path.join(input_dir, f"{xml_filename_base}_simplified_processed.scl")
# Verificar si el archivo JSON procesado de entrada existe
if not os.path.exists(input_json_file):
print(f"Error: Processed JSON file not found: '{input_json_file}'")
print(f"Ensure 'x2_process.py' ran successfully for '{args.source_xml_filepath}'.")
sys.exit(1) # Salir si el archivo de entrada no existe
else:
# Llamar a la función principal con los nombres derivados
generate_scl(input_json_file, output_scl_file)