33 lines
6.8 KiB
Markdown
33 lines
6.8 KiB
Markdown
### Aqui se mantiene la memoria de evolucion de las distintas decisiones que fueron tomadas y porque
|
|
|
|
BEPU.cs : SimulationManagerBEPU gestor de la simulacion con el motor BEPUphysics y punto de creacion y modificacion de los objetos dentro del mundo que se derivan des simBase
|
|
|
|
simBase : Clase base que da un marco a el resto de los objetos
|
|
simBarrera : Simula una fotocelula con un espejo usando RayCast
|
|
simBotella : Simula una botella que puede transitar por los transportes simTransporte o simCurve
|
|
simCurve : Simula una curva o arco de curva de transporte
|
|
simDescarte : Permite la eliminacion localizada de botellas en un punto del mundo
|
|
simGuia : Es un box con el que las botellas pueden colisionar y cambiar de direccion.
|
|
simTransporte : Es un box por donde las botellas pueden desplazarse usando un truco de aplicar la Velocity.Linear pero sin integrar esta velocidad para que no se mueva el objeto transporte.
|
|
|
|
* Se usaron esferas en vez de cilindros para mejorar la eficiencia. En el Debug3D si se usan cilindros. **Revertido**: Se ha vuelto a usar `Cylinder` para las `simBotella` ya que el nuevo sistema de fricción debería prevenir la rotación indeseada que ocurría con los `LinearAxisMotor`.
|
|
|
|
* Se reemplazó el sistema de `LinearAxisMotor` que actuaba sobre las `simBotella` por un sistema basado en fricción. Los transportes (`simTransporte` y `simCurve`) ahora son cuerpos cinemáticos que no se mueven de su sitio. Para lograr que arrastren a las botellas, se les asigna una velocidad (`Velocity.Linear` o `Velocity.Angular`) justo antes de que el solver se ejecute (en `OnSubstepStarted`) y se les quita justo después (en `OnSubstepEnded`). Esto permite que los cuerpos cinemáticos transmitan su velocidad a través de la fricción durante la simulación, pero evita que el `PoseIntegrator` los desplace de su posición original, ya que su velocidad es cero cuando se integra la pose.
|
|
|
|
* Para aumentar la estabilidad de las `simBotella` y evitar que roten descontroladamente sobre su eje Z al ser arrastradas, se implementó un callback `IntegrateVelocity` personalizado. Este callback identifica las botellas durante la integración y les aplica un amortiguamiento angular (`AngularDamping`) adicional solo en el eje Z. Se descartó la idea inicial de modificar dinámicamente la masa de las botellas dentro de este callback, ya que la arquitectura de BEPUphysics no permite cambiar la masa o la inercia de un cuerpo durante la fase de integración de velocidad.
|
|
|
|
* Originalmente se habia puesto todos los objetos en awaken para poder usar las colisiones constantemente incluso con objetos en modo sleep para que los simBarrera puedan detectar las colisiones. Ahora que se usar RayCast podemos dejar que las simBotellas se duerman
|
|
|
|
* La unica clase que se ha terminado de refactorizar respecto a el cambio de coordenadas es simBarrera y ucPhotocell. El concepto es poder separar usando metodos de SimulationManagerBEPU y estructuras como BarreraData la conversion de coordenadas de WPF a coordenadas BEPU. Para esto se usa CoordinateConverter que permite bidireccionalmente convertir las coordenadas pero esto solo se debe usar en SimulationManagerBEPU las clases derivadas de osBase solo deben manejar coordenadas WPF, mientras que las clases dervadas de simBase solo deben almacenar y usar coordenadas BEPU. La z tambien es algo que se debe transferir a SimulationManagerBEPU ya que los objetos simBase deberian recibir tambien sus coordenadas de Z desde SimulationManagerBEPU y ser SimulationManagerBEPU el que gestione las Z.
|
|
|
|
* Se ha implementado un sistema para evitar que las botellas (`simBotella`) "floten" o se eleven de manera irreal por la acumulación de presión en la simulación. Cada botella ahora registra si está en contacto con un transporte y almacena la última coordenada Z válida durante dicho contacto. Si la botella deja de tener contacto con transportes por varios frames consecutivos, se incrementa un contador de "presión". Al superar un umbral, el sistema reestablece la posición Z de la botella a su última altura conocida, previniendo la flotación. Este contador de presión se decrementa rápidamente al volver a hacer contacto con un transporte.
|
|
|
|
* Cuando una botella (`simBotella`) entra en contacto con un transporte de frenado (`simTransporte` con `isBrake = true`), su posición se ajusta automáticamente para centrarla en el eje longitudinal del transporte. Esto se realiza una única vez, en el primer contacto, para asegurar un acoplamiento suave y predecible. La posición de la botella se proyecta sobre la línea central del transporte y su velocidad lateral se anula, evitando que la botella se desvíe mientras frena y se alinea con el flujo de salida.
|
|
|
|
* Se ha implementado un indicador visual simple para mostrar cuando los transportes (`simTransporte`) están en movimiento. El sistema detecta automáticamente si un transporte tiene velocidad (`Speed > 0.001`) y cambia su color a verde brillante. Los transportes detenidos se muestran en verde normal. Esta funcionalidad se integra en el sistema de materiales del `BEPUVisualization3DManager` y se actualiza automáticamente cuando cambia el estado del transporte, proporcionando una retroalimentación visual inmediata del estado de operación.
|
|
|
|
* Se ha implementado un sistema de animaciones automáticas usando StoryBoard de WPF para los transportes en movimiento. Los transportes activos muestran una animación continua que combina: (1) rotación sutil muy lenta alrededor del eje Z (20 segundos por vuelta completa) y (2) pulsación cíclica del color del material (1.5 segundos por ciclo). Las animaciones se crean y destruyen automáticamente según el estado del transporte, sin necesidad de actualización manual en cada frame. El sistema gestiona las animaciones activas en un diccionario y las limpia correctamente cuando se eliminan objetos. Se resolvió el problema de `InvalidOperationException` al animar brushes inmutables creando una función `CreateAnimatableMaterial` que genera materiales específicamente diseñados para ser animados sin estar "frozen", proporcionando una experiencia visual fluida y eficiente.
|
|
|
|
* Se ha mejorado el sistema de guías curvas (`ucTransporteCurvaGuias`) para incluir apertura en cono en los extremos de entrada y salida. Se agregó el parámetro `AnguloAperturaGuias` (por defecto 5 grados) que permite configurar la apertura modificando los radios de las guías en los puntos extremos. En lugar de cambiar ángulos, se reduce el radio de la guía superior (externa) y se aumenta el radio de la guía inferior (interna) en los segmentos inicial y final, creando naturalmente la apertura en cono. La modificación del radio se calcula usando `Math.Sin(anguloApertura)` para obtener el desplazamiento apropiado. Esta apertura facilita la entrada y salida de botellas del transporte curvo, reduciendo atascos y mejorando el flujo de materiales manteniendo la continuidad geométrica de las guías.
|
|
|